On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator
Year 2024,
Volume: 73 Issue: 3, 664 - 673, 27.09.2024
Zeinab Nsar
,
A. O. Mostafa
,
Samar Mohamed
Abstract
In this paper, we define a new class of bi-univalent functions of complex order $∑_{q}ⁿ(τ,ζ;φ)$ which is defined by subordination in the open unit disc $D$. By using $D_{q}ⁿϜ(ς)$ operator. Furthermore, using the Faber polynomial expansions, we get upper bounds for the coefficients of function belonging to this class.
References
- Adegani, E. A., Bulut, S., Zireh, A., Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55(2) (2018), 405-413. https://doi.org/10.4134/BKMS.b170051
- Airault, H., Symmetric sums associated to the factorization of Grunsky coefficients, in groups and symmetries, CRM Proc. Lecture Notes Amer. Math. Soc. Providence, RI, 47 (2007), 3-16.
- Airault, H., Bouali, A., Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(3) (2006), 179-222. DOI:10.1016/j.bulsci.2005.10.002
- Airault, H., Ren, J., An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126(5) (2002), 343-367. https://doi.org/10.1016/S0007-4497(02)01115-6
- Ali, R. M, Lee, S. K., Ravichandran, V., Supramanian, S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(3) (2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
- Annby, M. H., Mansour, Z. S., q−Fractional Calculus Equations, Lecture Notes in Mathematics., Vol. 2056, Springer, Berlin, 2012.
- Aouf, M. K., Madian, S. M., Coefficient bounds for bi-univalent classes defined by Bazilevic functions and convolution, Boletln de la Sociedad Matematica Mexicana, 26 (2020), 1045-1062. https://doi.org/10.1007/s40590-020-00304-0
- Aouf, M. K., Mostafa, A. O., Subordination results for analytic functions associated with fractional q−calculus operators with complex order, Afr. Mat., 31 (2020), 1387–1396. https://doi.org/10.1007/s13370-020-00803-3
- Aouf, M. K., Mostafa, A. O., Some subordinating results for classes of functions defined by S˘al˘agean type q−derivative operator, Filomat., 34(7) (2020), 2283–2292. https://doi.org/10.2298/FIL2007283A
- Aouf, M. K., Mostafa, A. O., Elmorsy, R. E., Certain subclasses of analytic functions with varying arguments associated with q−difference operator, Afrika Math., 32 (2021), 621-630. https://doi.org/10.1007/s13370-020-00849-3
- Aral, A., Gupta, V., Agarwal, R. P., Applications of q−Calculus in Operator Theory, Springer, New York, 2013.
- Bulboaca, T., Differential Subordinations and Superordinations, New Results, Cluj-Napoca, House of Scientific Book Publ., 2005.
- Bulut, S., Magesh, N., Balaji, K. V., Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, J. Class. Anal., 11(1) (2017), 83-89. http://dx.doi.org/10.7153/jca-11-06
- Çağlar, M., Palpandy, G., Deniz, E., Unpredictability of initial coefficient bounds for m-fold symmetric bi-univalent starlike and convex functions defined by subordinations, Afr. Mat., 29 (2018), 793–802. https://doi.org/10.1007/s13370-018-0578-0
- Deniz, E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(1) (2013), 49-60. http://dx.doi.org/10.7153/jca-02-05
- Deniz, E., Jahangiri, J. M., Kına, S. K., Hamidi, S. G., Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Ineq., 12(3) (2018), 645–653. http://dx.doi.org/10.7153/jmi-2018-12-49
- Faber, G., Uber polynomische Entwickelungen, Math. Ann., 57(3) (1903), 389-408.
- Frasin, B. A., Murugusundaramoorthy, G., A subordination results for a class of analytic functions defined by q−differential operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 53-64. DOI: 10.2478/aupcsm-2020-0005
- Govindaraj, M., Sivasubramanian, S., On a class of analytic function related to conic domains involving q−calculus, Anal. Math., 43(3) (2017), 475–487. DOI: 10.1007/s10476-017-0206-5
- Hamidi, S. G., Jahangiri, J. M., Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119. http://bims.ims.ir/
- Jackson, F. H., On q−functions and a certain difference operator, Trans. R. Soc. Edinb., 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751
- Jahangiri, J. M., Hamidi, S. G., Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., 2013, Art. ID 190560. http://dx.doi.org/10.1155/2013/190560
- Kazımoğlu, S., Deniz, E., Fekete-Szego problem for generalized bi- subordinate functions of complex order, Hacet. J. Math. Stat., 49(5) (2020), 1695-1705. DOI : 10.15672/hujms.557072
- Madian, S. M., Some properties for certain class of bi-univalent functions defined by q−Cataş operator with bounded boundary rotation, AIMS Mathematics, 7 (2022), 903-914. 10.3934/math.2022053.
- Miller, S., Mocanu, S., Differential Subordinations, Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., (255), New York, Marcel Dekker Inc., 2000.
- Mostafa, A. O., Aouf, M. K., Elmorsy, R. E., Coefficient bounds for general class of bi-univalent functions of complex order associated with q−Salagean operator and Chebyshev polynomials, Electric J. Math. Anal. Appl., 8(2) (2020), 251-260. http://mathfrac.org/Journals/EJMAA/
- Mostafa, A. O., Saleh, Z. M., Coefficient bounds for a class of bi-univalent functions defined by Chebyshev polynomials, Int. J. Open. Prob. Compl. Anal., 13(3) (2021), 19-28. http://www.icsrs.org/Volumes/ijopca/vol.13/3.2
- Nehari, Z., Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
- Salagean, G., Subclasses of Univalent Functions, Lecture Note in Math., Springer-Verlag 1013, 1983, 362-372.
- Srivastava, H. M., Aouf, M. K., Mostafa, A. O., Some properties of analytic functions associated with fractional q−calculus operators, Miskolc Mathematical Notes., 20(2) (2019), 1245–1260. DOI: 10.18514/MMN.2019.3046
- Srivastava, H. M., Eker, S. S., Ali, R. M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(8) (2015), 1839-1845. http://www.pmf.ni.ac.rs/filomat
- Srivastava, H. M., Murugusundaramoorthy, G., El-Deeb, S. M., Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the boreal distribution of the Mittag-Leffler type, Journal of Nonlinear and Variational Analysis, 5(1) (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07
- Todorov, P. G., On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162(1) (1991), 268-276. https://doi.org/10.1016/0022-247X(91)90193-4.
- Vijaya, K., Kasthuri, M., Murugusundaramoorthy, G., Coefficient bounds for subclasses of bi-univalent functions defined by the S˘al˘agean derivative operator, Boletin de la Asociaciton, Matematica Venezolana, 21(2) (2014), 1-9.
- Yalçın, S., Altınkaya, Ş., Murugusundaramoorthy, G., Vijaya, K., Hankel inequalities for a subclass of Bi-Univalent functions based on Salagean type q−difference operator, Journal of Mathematical and Fundamental Sciences, 52(2) (2020), 189–201. https://doi.org/10.5614/j.math.fund.sci.2020.52.2.4
Year 2024,
Volume: 73 Issue: 3, 664 - 673, 27.09.2024
Zeinab Nsar
,
A. O. Mostafa
,
Samar Mohamed
References
- Adegani, E. A., Bulut, S., Zireh, A., Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55(2) (2018), 405-413. https://doi.org/10.4134/BKMS.b170051
- Airault, H., Symmetric sums associated to the factorization of Grunsky coefficients, in groups and symmetries, CRM Proc. Lecture Notes Amer. Math. Soc. Providence, RI, 47 (2007), 3-16.
- Airault, H., Bouali, A., Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(3) (2006), 179-222. DOI:10.1016/j.bulsci.2005.10.002
- Airault, H., Ren, J., An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126(5) (2002), 343-367. https://doi.org/10.1016/S0007-4497(02)01115-6
- Ali, R. M, Lee, S. K., Ravichandran, V., Supramanian, S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(3) (2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
- Annby, M. H., Mansour, Z. S., q−Fractional Calculus Equations, Lecture Notes in Mathematics., Vol. 2056, Springer, Berlin, 2012.
- Aouf, M. K., Madian, S. M., Coefficient bounds for bi-univalent classes defined by Bazilevic functions and convolution, Boletln de la Sociedad Matematica Mexicana, 26 (2020), 1045-1062. https://doi.org/10.1007/s40590-020-00304-0
- Aouf, M. K., Mostafa, A. O., Subordination results for analytic functions associated with fractional q−calculus operators with complex order, Afr. Mat., 31 (2020), 1387–1396. https://doi.org/10.1007/s13370-020-00803-3
- Aouf, M. K., Mostafa, A. O., Some subordinating results for classes of functions defined by S˘al˘agean type q−derivative operator, Filomat., 34(7) (2020), 2283–2292. https://doi.org/10.2298/FIL2007283A
- Aouf, M. K., Mostafa, A. O., Elmorsy, R. E., Certain subclasses of analytic functions with varying arguments associated with q−difference operator, Afrika Math., 32 (2021), 621-630. https://doi.org/10.1007/s13370-020-00849-3
- Aral, A., Gupta, V., Agarwal, R. P., Applications of q−Calculus in Operator Theory, Springer, New York, 2013.
- Bulboaca, T., Differential Subordinations and Superordinations, New Results, Cluj-Napoca, House of Scientific Book Publ., 2005.
- Bulut, S., Magesh, N., Balaji, K. V., Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, J. Class. Anal., 11(1) (2017), 83-89. http://dx.doi.org/10.7153/jca-11-06
- Çağlar, M., Palpandy, G., Deniz, E., Unpredictability of initial coefficient bounds for m-fold symmetric bi-univalent starlike and convex functions defined by subordinations, Afr. Mat., 29 (2018), 793–802. https://doi.org/10.1007/s13370-018-0578-0
- Deniz, E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(1) (2013), 49-60. http://dx.doi.org/10.7153/jca-02-05
- Deniz, E., Jahangiri, J. M., Kına, S. K., Hamidi, S. G., Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Ineq., 12(3) (2018), 645–653. http://dx.doi.org/10.7153/jmi-2018-12-49
- Faber, G., Uber polynomische Entwickelungen, Math. Ann., 57(3) (1903), 389-408.
- Frasin, B. A., Murugusundaramoorthy, G., A subordination results for a class of analytic functions defined by q−differential operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 53-64. DOI: 10.2478/aupcsm-2020-0005
- Govindaraj, M., Sivasubramanian, S., On a class of analytic function related to conic domains involving q−calculus, Anal. Math., 43(3) (2017), 475–487. DOI: 10.1007/s10476-017-0206-5
- Hamidi, S. G., Jahangiri, J. M., Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119. http://bims.ims.ir/
- Jackson, F. H., On q−functions and a certain difference operator, Trans. R. Soc. Edinb., 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751
- Jahangiri, J. M., Hamidi, S. G., Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., 2013, Art. ID 190560. http://dx.doi.org/10.1155/2013/190560
- Kazımoğlu, S., Deniz, E., Fekete-Szego problem for generalized bi- subordinate functions of complex order, Hacet. J. Math. Stat., 49(5) (2020), 1695-1705. DOI : 10.15672/hujms.557072
- Madian, S. M., Some properties for certain class of bi-univalent functions defined by q−Cataş operator with bounded boundary rotation, AIMS Mathematics, 7 (2022), 903-914. 10.3934/math.2022053.
- Miller, S., Mocanu, S., Differential Subordinations, Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., (255), New York, Marcel Dekker Inc., 2000.
- Mostafa, A. O., Aouf, M. K., Elmorsy, R. E., Coefficient bounds for general class of bi-univalent functions of complex order associated with q−Salagean operator and Chebyshev polynomials, Electric J. Math. Anal. Appl., 8(2) (2020), 251-260. http://mathfrac.org/Journals/EJMAA/
- Mostafa, A. O., Saleh, Z. M., Coefficient bounds for a class of bi-univalent functions defined by Chebyshev polynomials, Int. J. Open. Prob. Compl. Anal., 13(3) (2021), 19-28. http://www.icsrs.org/Volumes/ijopca/vol.13/3.2
- Nehari, Z., Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
- Salagean, G., Subclasses of Univalent Functions, Lecture Note in Math., Springer-Verlag 1013, 1983, 362-372.
- Srivastava, H. M., Aouf, M. K., Mostafa, A. O., Some properties of analytic functions associated with fractional q−calculus operators, Miskolc Mathematical Notes., 20(2) (2019), 1245–1260. DOI: 10.18514/MMN.2019.3046
- Srivastava, H. M., Eker, S. S., Ali, R. M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(8) (2015), 1839-1845. http://www.pmf.ni.ac.rs/filomat
- Srivastava, H. M., Murugusundaramoorthy, G., El-Deeb, S. M., Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the boreal distribution of the Mittag-Leffler type, Journal of Nonlinear and Variational Analysis, 5(1) (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07
- Todorov, P. G., On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162(1) (1991), 268-276. https://doi.org/10.1016/0022-247X(91)90193-4.
- Vijaya, K., Kasthuri, M., Murugusundaramoorthy, G., Coefficient bounds for subclasses of bi-univalent functions defined by the S˘al˘agean derivative operator, Boletin de la Asociaciton, Matematica Venezolana, 21(2) (2014), 1-9.
- Yalçın, S., Altınkaya, Ş., Murugusundaramoorthy, G., Vijaya, K., Hankel inequalities for a subclass of Bi-Univalent functions based on Salagean type q−difference operator, Journal of Mathematical and Fundamental Sciences, 52(2) (2020), 189–201. https://doi.org/10.5614/j.math.fund.sci.2020.52.2.4