Research Article
BibTex RIS Cite

On the eigenstructure of the q-Stancu operator

Year 2024, Volume: 73 Issue: 3, 820 - 832, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1388792

Abstract

The main goal of this research is to find the eigenvalues and the corresponding eigenfunctions of the q-Stancu operator, $L_{n,s,q}$, introduced by $L$. Yun and R. Wang. In this work, an explicit representation for moments of all orders has been derived. Further, it has been proved that $L_{n,s,q}$ possesses $n − s + 1$ linearly independent eigenfunctions whose explicit expression and the corresponding eigenvalues are derived. In addition, for special choices of parameters, several eigenfunctions are depicted.

References

  • Andrews, G. E., Askey, R., Roy, R., Special Functions, Encyclopedia of Mathematics and Its Applications, The University Press, Cambridge, 1999, 664 pp.
  • Bernstein, S. N., Demonstration du theoreme de Weierstrass fondee sur le calcul of probabilites, Comm. Kharkov Math. Soc., 13 (1912), 1-2.
  • Bostanci, T., Başcanbaz-Tunca, G., On Stancu operators depending on a non-negative integer, Filomat, 36(18) (2022), 6129-6138. https://doi.org/10.2298/FIL2218129B
  • Cooper, S., Waldron, S., The eigenstructure of the Bernstein operator, J. Approx. Theory, 105(1) (2000), 133-165. https://doi.org/10.1006/jath.2000.3464
  • Goodman, T. N. T., Oruç, H., Phillips, G. M., Convexity and generalized Bernstein polynomials, Proc. Edinburgh Math. Soc., 42(1) (1999), 179-190. https://doi.org/10.1017/S0013091500020101
  • Gordon, W. J., Riesenfeld, R. F., Bernstein–Bezier methods for the computer-aided design of free-form curves and surfaces, J. Assoc. Comput. Mach., 21(2) (1974), 293-310. https://doi.org/10.1145/321812.321824
  • Gupta, V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 197(1) (2008), 172-178. https://doi.org/10.1016/j.amc.2007.07.056
  • Jing, S., The q-deformed binomial distribution and its asymptotic behaviour, J. Phys. A: Math. Gen., 27(2) (1994), 493-499. https://doi.org/10.1088/0305-4470/27/2/031
  • Köroğlu, B., Taşdelen Yeşildal, F., On the eigenstructure of the (α, q)-Bernstein operator, Hacet. J. Math. Stat., 50(4) (2021), 1111-1122. https://doi.org/10.15672/hujms.779544
  • Landau, L. D., Lifshitz, E. M., Mechanics: Course of Theoretical Physics, Vol. 1, 3rd edition, Butterworth-Heinemann, 1976.
  • Landau, L. D., Lifshitz, E. M., Quantum Mechanics: Non-Relativistic Theory 3rd Edition, Vol. 3, Butterworth-Heinemann, 1981.
  • Lupaş, A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9 (1987), 85-92.
  • Ostrovska, S., Turan, M., On the eigenvectors of the q-Bernstein operators, Math. Methods Appl. Sci., 37(4) (2014), 562-570. https://doi.org/10.1002/mma.2814
  • Ostrovska, S., Turan, M., On the block functions generating the limit q-Lupaş operator, Quaest. Math., 46(4) (2023), 711-719. https://doi.org/10.2989/16073606.2022.2040632
  • Phillips, G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), 511-518.
  • Rajagpoal, L., Roy, S. D., Design of maximally-flat FIR filters using the Bernstein polynomial, IEEE Trans. Circuits Syst., 34(12) (1987), 1587-1590. https://doi.org/10.1109/TCS.1987.1086077
  • Stancu, D. D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983), 211-229. https://doi.org/10.1007/BF02575593
  • Xiang, X., Stancu polynomials based on the q-integers, Anal. Theory Appl., 28(3) (2012), 232-241. https://doi.org/10.3969/j.issn.1672-4070.2012.03.003
  • Yun, L., Xiang, X., On shape-preserving properties and simultaneous approximation of Stancu operator, Anal. Theory Appl., 24 (2008), 195-204. https://doi.org/10.1007/s10496-008-0195-0
  • Yun, L., Wang, R., Approximation and shape-preserving properties of q-Stancu operator, Anal. Theory Appl., 27 (2011), 201-210. https://doi.org/10.1007/s10496-011-0201-9
  • Zee, A., Quantum Field Theory in a Nutshell, 2nd Edition, Princeton University Press, Princeton, 2003.
Year 2024, Volume: 73 Issue: 3, 820 - 832, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1388792

Abstract

References

  • Andrews, G. E., Askey, R., Roy, R., Special Functions, Encyclopedia of Mathematics and Its Applications, The University Press, Cambridge, 1999, 664 pp.
  • Bernstein, S. N., Demonstration du theoreme de Weierstrass fondee sur le calcul of probabilites, Comm. Kharkov Math. Soc., 13 (1912), 1-2.
  • Bostanci, T., Başcanbaz-Tunca, G., On Stancu operators depending on a non-negative integer, Filomat, 36(18) (2022), 6129-6138. https://doi.org/10.2298/FIL2218129B
  • Cooper, S., Waldron, S., The eigenstructure of the Bernstein operator, J. Approx. Theory, 105(1) (2000), 133-165. https://doi.org/10.1006/jath.2000.3464
  • Goodman, T. N. T., Oruç, H., Phillips, G. M., Convexity and generalized Bernstein polynomials, Proc. Edinburgh Math. Soc., 42(1) (1999), 179-190. https://doi.org/10.1017/S0013091500020101
  • Gordon, W. J., Riesenfeld, R. F., Bernstein–Bezier methods for the computer-aided design of free-form curves and surfaces, J. Assoc. Comput. Mach., 21(2) (1974), 293-310. https://doi.org/10.1145/321812.321824
  • Gupta, V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 197(1) (2008), 172-178. https://doi.org/10.1016/j.amc.2007.07.056
  • Jing, S., The q-deformed binomial distribution and its asymptotic behaviour, J. Phys. A: Math. Gen., 27(2) (1994), 493-499. https://doi.org/10.1088/0305-4470/27/2/031
  • Köroğlu, B., Taşdelen Yeşildal, F., On the eigenstructure of the (α, q)-Bernstein operator, Hacet. J. Math. Stat., 50(4) (2021), 1111-1122. https://doi.org/10.15672/hujms.779544
  • Landau, L. D., Lifshitz, E. M., Mechanics: Course of Theoretical Physics, Vol. 1, 3rd edition, Butterworth-Heinemann, 1976.
  • Landau, L. D., Lifshitz, E. M., Quantum Mechanics: Non-Relativistic Theory 3rd Edition, Vol. 3, Butterworth-Heinemann, 1981.
  • Lupaş, A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9 (1987), 85-92.
  • Ostrovska, S., Turan, M., On the eigenvectors of the q-Bernstein operators, Math. Methods Appl. Sci., 37(4) (2014), 562-570. https://doi.org/10.1002/mma.2814
  • Ostrovska, S., Turan, M., On the block functions generating the limit q-Lupaş operator, Quaest. Math., 46(4) (2023), 711-719. https://doi.org/10.2989/16073606.2022.2040632
  • Phillips, G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), 511-518.
  • Rajagpoal, L., Roy, S. D., Design of maximally-flat FIR filters using the Bernstein polynomial, IEEE Trans. Circuits Syst., 34(12) (1987), 1587-1590. https://doi.org/10.1109/TCS.1987.1086077
  • Stancu, D. D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983), 211-229. https://doi.org/10.1007/BF02575593
  • Xiang, X., Stancu polynomials based on the q-integers, Anal. Theory Appl., 28(3) (2012), 232-241. https://doi.org/10.3969/j.issn.1672-4070.2012.03.003
  • Yun, L., Xiang, X., On shape-preserving properties and simultaneous approximation of Stancu operator, Anal. Theory Appl., 24 (2008), 195-204. https://doi.org/10.1007/s10496-008-0195-0
  • Yun, L., Wang, R., Approximation and shape-preserving properties of q-Stancu operator, Anal. Theory Appl., 27 (2011), 201-210. https://doi.org/10.1007/s10496-011-0201-9
  • Zee, A., Quantum Field Theory in a Nutshell, 2nd Edition, Princeton University Press, Princeton, 2003.
There are 21 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis, Approximation Theory and Asymptotic Methods, Applied Mathematics (Other)
Journal Section Research Articles
Authors

Övgü Gürel Yılmaz 0000-0003-1498-8526

Publication Date September 27, 2024
Submission Date November 10, 2023
Acceptance Date June 6, 2024
Published in Issue Year 2024 Volume: 73 Issue: 3

Cite

APA Gürel Yılmaz, Ö. (2024). On the eigenstructure of the q-Stancu operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 820-832. https://doi.org/10.31801/cfsuasmas.1388792
AMA Gürel Yılmaz Ö. On the eigenstructure of the q-Stancu operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):820-832. doi:10.31801/cfsuasmas.1388792
Chicago Gürel Yılmaz, Övgü. “On the Eigenstructure of the Q-Stancu Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 820-32. https://doi.org/10.31801/cfsuasmas.1388792.
EndNote Gürel Yılmaz Ö (September 1, 2024) On the eigenstructure of the q-Stancu operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 820–832.
IEEE Ö. Gürel Yılmaz, “On the eigenstructure of the q-Stancu operator”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 820–832, 2024, doi: 10.31801/cfsuasmas.1388792.
ISNAD Gürel Yılmaz, Övgü. “On the Eigenstructure of the Q-Stancu Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 820-832. https://doi.org/10.31801/cfsuasmas.1388792.
JAMA Gürel Yılmaz Ö. On the eigenstructure of the q-Stancu operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:820–832.
MLA Gürel Yılmaz, Övgü. “On the Eigenstructure of the Q-Stancu Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 820-32, doi:10.31801/cfsuasmas.1388792.
Vancouver Gürel Yılmaz Ö. On the eigenstructure of the q-Stancu operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):820-32.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.