Nonlinear semilinear integro-differential evolution equations with impulsive effects
Year 2024,
Volume: 73 Issue: 4, 894 - 917, 30.12.2024
Noreddine Rezoug
,
Abdelkrim Salım
,
Mouffak Benchohra
Abstract
In this paper, we investigate the existence of a piecewise asymptotically almost automorphic mild solution to some classes of integro-differential equations with impulsive effects in Banach space. The working tools are based on the Mönch’s fixed point theorem, the concept of measures of noncompactness theorem and resolvent operator. In order to illustrate our main results, we study the piecewise asymptotically almost automorphic solution of the impulsive differential equations.
References
- Abbas, S., Mahto, L., Hafayed, M., Alimi, A. M., Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients, Neurocomputing, 142 (2014), 326-334. https://doi.org/10.1016/j.neucom.2014.04.028
- Akgöl, S. D., Asymptotic equivalence of impulsive dynamic equations on time scales, Hacet. J. Math. Stat., 52(2) (2023), 277-291. https://doi.org/10.15672/hujms.1103384
- Akgöl, S. D., Existence of solutions for impulsive boundary value problems on infinite intervals, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(3) (2023), 721-736. https://doi.org/10.31801/cfsuasmas.1186785
- Akgöl, S. D., Oscillation of impulsive linear differential equations with discontinuous solutions, Bull. Aust. Math. Soc., 107(1) (2023), 112-124. https://doi.org/10.1017/s0004972722000429
- Araya, D., Lizama, C., Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69(11) (2008), 3692-3705. http://dx.doi.org/10.1016/j.na.2007.10.004
- Arjunan, M. M., Mlaiki, N., Kavitha, V., Abdeljawad, T., On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space, AIMS Math., 8(1) (2023), 1384-1409. https://doi.org/10.3934/math.2023070
- Bainov, D. D., Simeonov, P. S., Impulsive Differential Equations: Periodic Solutions and Applications, In: Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 66. Harlow, Longman Scientific Technical, New York, 1993.
- Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Note in Pure App. Math., New York, 1980.
- Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26928-8
- Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-34877-8
- Benkhettou, N., Aissani, K., Salim, A., Benchohra, M., Tunc, C., Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim., 6 (2022), 79-94.
- Benkhettou, N., Salim, A., Aissani, K., Benchohra, M., Karapınar, E., Non-instantaneous impulsive fractional integro-differential equations with state-dependent delay, Sahand Commun. Math. Anal., 19 (2022), 93-109. https://doi.org/10.22130/scma.2022.542200.1014
- Bensalem, A., Salim, A., Ahmad, B., Benchohra, M., Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fr´echet spaces, CUBO., 25(2) (2023), 231–250. https://doi.org/10.56754/0719-0646.2502.231
- Bensalem, A., Salim, A., Benchohra, M., Ulam-Hyers-Rassias stability of neutral functional integrodifferential evolution equations with non-instantaneous impulses on an unbounded interval, Qual. Theory Dyn. Syst., 22 (2023), 29 pages. https://doi.org/10.1007/s12346-023-00787-y
- Bensalem, A., Salim, A., Benchohra, M., Feckan, M., Approximate controllability of neutral functional integro-differential equations with state-dependent delay and non-instantaneous impulses, Mathematics, 11 (2023), 1-17. https://doi.org/10.3390/math11071667
- Bochner, S., Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci., 52 (1964), 907-910.
- Caraballo, T., Cheban, D., Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition, J. Differential Equations, 246(1) (2009), 108-128. http://dx.doi.org/10.1016/j.jde.2008.04.001
- Cao, J., Yang, Q., Huang, Z., Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stoch.: An Int. J. Probab. Stoch. Processes, 83 (2011), 259-275. http://dx.doi.org/10.1080/17442508.2010.533375
- Cao, J., Huang, Z., N’Gu´er´ekata, G. M., Existence of asymptotically almost automorphic mild solutions for nonautonomous semilinear evolution equations, Elec. J. Differential Equations, 2018(37) (2018), 16 pp.
- Chavez, A., Pinto, M., Zavaleta, U., On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications, J. Math. Anal. Appl., 494(1) (2021), 38 pp. http://dx.doi.org/10.1016/j.jmaa.2020.124395
- Chen, P., Li, Y., Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744. http://dx.doi.org/10.1007/s00025-012-0230-5
- Corduneanu, C., Integral Equations and Stability of Feedback Systems, Acadimic Press, New York, 1973.
- Desch, W., Grimmer, R., Schappacher, W., Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
- Dianaga, T., N’Guerekata, G. M., Almost automorphic solutions to some classes of partial evolution equations, Appl. Math. Lett., 20 (2007), 462-466. http://dx.doi.org/10.1016/j.aml.2006.05.015
- Ezzinbi, K., N’Guerekata, G. M., Almost automorphic solutions for some partial functional differential equations, J. Math. Anal. Appl., 328 (1) (2007), 344-358. https://doi.org/10.1016/j.jmaa.2006.05.036
- Fen, M. O., Fen, F. T., Homoclinic and heteroclinic motions in hybrid systems with impacts, Mathematica Slovaca., 67(5) (2017), 1179-1188. https://doi.org/10.1515/ms-2017-0041
- Fen, M. O., Fen, F. T., Replication of period-doubling route to chaos in impulsive systems, Electron. J. Qual. Theory Differ. Equ., 2019(58) (2019), 1-20. https://doi.org/10.14232/ejqtde.2019.1.58
- Fen, M. O., Fen, F. T., Unpredictability in quasilinear non-autonomous systems with regular moments of impulses, Mediterr. J. Math., 20(4) (2023), 191. https://doi.org/10.1007/s00009-023-02401-6
- Goldstein, J. A., N’Guerekata, G. M., Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc., 133 (2005), 2401-2408. http://dx.doi.org/10.2307/4097881
- Grimmer, R. C., Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.
- Heinz, H. P., On the behaviour of measure of noncompactness with respect to differentiation and integration of rector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.
- Kavitha, V., Baleanu, D., Grayna, J., Measure pseudo almost automorphic solution to second order fractional impulsive neutral differential equation, AIMS Math., 6(8) (2021), 8352-8366. http://dx.doi.org/10.3934/math.2021484
- Kavitha, V., Arjunan, M., Baleanu, D., Grayna, J., Weighted pseudo almost automorphic functions with applications to impulsive fractional integro-differential equation, An. S¸tiint¸. Univ. Ovidius Constant¸a Ser. Mat., 31(1) (2023), 143-166. https://doi.org/10.2478/auom-2023-0007
- Liang, J., Zhang, J., Xiao, T., Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340(2) (2008), 1493-1499. https://doi.org/10.1016/j.jmaa.2007.09.065
- Mahto, L., Abbas, S., PC-almost automorphic solution of impulsive fractional diferential equations, Mediter. J. Math., 12(3) (2015), 771-790. http://dx.doi.org/10.1007/s00009-014-0449-3
- Milman, V. D., Myshkis, A. D., On the stability of motion in presence of impulses, Sib. Math. J., 1 (1960), 233-237.
- Mishra, I., Bahuguna, D., Abbas, S., Existence of almost automorphic solutions of neutral functional differential equation, Nonlinear Dyn. Syst. Theory., 11(2) (2011), 165-172.
- Mophoua, G., N’Guerekata, G. M., On some classes of almost automorphic functions and applications to fractional differential equations, Compu. Math. Appl., 59 (2010), 1310-1317.
http://dx.doi.org/10.1016/j.camwa.2009.05.008
- Mönch, H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985-999.
- N’Guerekata, G. M., Sur les solutions presqu’Automorphes d’´equations differentielles abstraites [On almost automorphic solutions of abstract differential equations], Ann. Sci. Math. Quebec., 5 (1981), 69-79.
- N’Guerekata, G. M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic, New York, 2001.
- N’Guerekata, G. M., Topics in Almost Automorphy, Springer, New York, Boston, Dordrecht, London, Moscow, 2005.
- N’Guerekata, G. M., Spectral Teory for Bounded Functions and Applications to Evolution Equations, Nova Science Pub. NY, 2017.
- Rezoug, N., Benchohra, M., Ezzinbi, K., Asymptotically automorphic solutions of abstract fractional evolution equations with non-instantaneous impulses, Surv. Math. Appl., 17 (2022), 113-138.
- Rezoug, N., Salim, A., Benchohra, M., Asymptotically almost automorphy for impulsive integrodifferential evolution equations with infinite time delay via M¨onch fixed point, Evol. Equ. Control Theory, 13(4) (2024), 989-1014. http://dx.doi.org/10.3934/eect.2024014
- Santos, J. P. C., Cuevas, C., Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23(9) (2010), 960-965. https://doi.org/10.1016/j.aml.2010.04.016
- Singh, V., Pandey, D., Doubly weighted pseudo almost automorphic solutions for two-term fractional order differential equations, J. Nonlinear Evol. Equ. Appl., (4) (2018), 39-56.
- Svetlin, G. G., Akgöl, S. D., Kuş, M. E., Existence of solutions for first order impulsive periodic boundary value problems on time scales, Filomat, 37(10) (2023), 3029-3042. https://doi.org/10.2298/FIL2310029G
- Tokmak Fen, F., Fen, M. O., Modulo periodic Poisson stable solutions of dynamic equations on a time scale, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(4) (2023), 907-920. https://doi.org/10.31801/cfsuasmas.1220565
- Veech, W., Almost automorphic functions, Proc. Natl. Acad. Sci., 49 (1963), 462-464.
- Xia, Z., Piecewise asymptotically almost periodic solution of neutral Volterra integrodifferential equations with impulsive effects, Turkish J. Math., 41(6) (2017), 23. https://doi.org/10.3906/mat-1408-11
- Yan, Z., Zhang, H., Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay, Electron. J. Differential Equations, (206) (2013), 29 pp.
- Zheng, X. J., Ye, C. Z., Ding, H. S., Asymptotically almost automorphic solutions to nonautonomous semilinear evolution equations, Afr. Diaspora J. Math., 12(2) (2011), 104-112.
- Zhao, Z., Chang, Y., Nieto, J., Almost automorphic and pseudo-almost automorphic mild solutions to an abstract differential equation in Banach spaces, Nonlinear Anal. Theo. Meth. Appl., 72 (2010), 1886-1894. http://dx.doi.org/10.1016/j.na.2009.09.028
Year 2024,
Volume: 73 Issue: 4, 894 - 917, 30.12.2024
Noreddine Rezoug
,
Abdelkrim Salım
,
Mouffak Benchohra
References
- Abbas, S., Mahto, L., Hafayed, M., Alimi, A. M., Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients, Neurocomputing, 142 (2014), 326-334. https://doi.org/10.1016/j.neucom.2014.04.028
- Akgöl, S. D., Asymptotic equivalence of impulsive dynamic equations on time scales, Hacet. J. Math. Stat., 52(2) (2023), 277-291. https://doi.org/10.15672/hujms.1103384
- Akgöl, S. D., Existence of solutions for impulsive boundary value problems on infinite intervals, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(3) (2023), 721-736. https://doi.org/10.31801/cfsuasmas.1186785
- Akgöl, S. D., Oscillation of impulsive linear differential equations with discontinuous solutions, Bull. Aust. Math. Soc., 107(1) (2023), 112-124. https://doi.org/10.1017/s0004972722000429
- Araya, D., Lizama, C., Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69(11) (2008), 3692-3705. http://dx.doi.org/10.1016/j.na.2007.10.004
- Arjunan, M. M., Mlaiki, N., Kavitha, V., Abdeljawad, T., On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space, AIMS Math., 8(1) (2023), 1384-1409. https://doi.org/10.3934/math.2023070
- Bainov, D. D., Simeonov, P. S., Impulsive Differential Equations: Periodic Solutions and Applications, In: Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 66. Harlow, Longman Scientific Technical, New York, 1993.
- Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Note in Pure App. Math., New York, 1980.
- Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26928-8
- Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-34877-8
- Benkhettou, N., Aissani, K., Salim, A., Benchohra, M., Tunc, C., Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim., 6 (2022), 79-94.
- Benkhettou, N., Salim, A., Aissani, K., Benchohra, M., Karapınar, E., Non-instantaneous impulsive fractional integro-differential equations with state-dependent delay, Sahand Commun. Math. Anal., 19 (2022), 93-109. https://doi.org/10.22130/scma.2022.542200.1014
- Bensalem, A., Salim, A., Ahmad, B., Benchohra, M., Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fr´echet spaces, CUBO., 25(2) (2023), 231–250. https://doi.org/10.56754/0719-0646.2502.231
- Bensalem, A., Salim, A., Benchohra, M., Ulam-Hyers-Rassias stability of neutral functional integrodifferential evolution equations with non-instantaneous impulses on an unbounded interval, Qual. Theory Dyn. Syst., 22 (2023), 29 pages. https://doi.org/10.1007/s12346-023-00787-y
- Bensalem, A., Salim, A., Benchohra, M., Feckan, M., Approximate controllability of neutral functional integro-differential equations with state-dependent delay and non-instantaneous impulses, Mathematics, 11 (2023), 1-17. https://doi.org/10.3390/math11071667
- Bochner, S., Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci., 52 (1964), 907-910.
- Caraballo, T., Cheban, D., Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition, J. Differential Equations, 246(1) (2009), 108-128. http://dx.doi.org/10.1016/j.jde.2008.04.001
- Cao, J., Yang, Q., Huang, Z., Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stoch.: An Int. J. Probab. Stoch. Processes, 83 (2011), 259-275. http://dx.doi.org/10.1080/17442508.2010.533375
- Cao, J., Huang, Z., N’Gu´er´ekata, G. M., Existence of asymptotically almost automorphic mild solutions for nonautonomous semilinear evolution equations, Elec. J. Differential Equations, 2018(37) (2018), 16 pp.
- Chavez, A., Pinto, M., Zavaleta, U., On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications, J. Math. Anal. Appl., 494(1) (2021), 38 pp. http://dx.doi.org/10.1016/j.jmaa.2020.124395
- Chen, P., Li, Y., Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744. http://dx.doi.org/10.1007/s00025-012-0230-5
- Corduneanu, C., Integral Equations and Stability of Feedback Systems, Acadimic Press, New York, 1973.
- Desch, W., Grimmer, R., Schappacher, W., Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
- Dianaga, T., N’Guerekata, G. M., Almost automorphic solutions to some classes of partial evolution equations, Appl. Math. Lett., 20 (2007), 462-466. http://dx.doi.org/10.1016/j.aml.2006.05.015
- Ezzinbi, K., N’Guerekata, G. M., Almost automorphic solutions for some partial functional differential equations, J. Math. Anal. Appl., 328 (1) (2007), 344-358. https://doi.org/10.1016/j.jmaa.2006.05.036
- Fen, M. O., Fen, F. T., Homoclinic and heteroclinic motions in hybrid systems with impacts, Mathematica Slovaca., 67(5) (2017), 1179-1188. https://doi.org/10.1515/ms-2017-0041
- Fen, M. O., Fen, F. T., Replication of period-doubling route to chaos in impulsive systems, Electron. J. Qual. Theory Differ. Equ., 2019(58) (2019), 1-20. https://doi.org/10.14232/ejqtde.2019.1.58
- Fen, M. O., Fen, F. T., Unpredictability in quasilinear non-autonomous systems with regular moments of impulses, Mediterr. J. Math., 20(4) (2023), 191. https://doi.org/10.1007/s00009-023-02401-6
- Goldstein, J. A., N’Guerekata, G. M., Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc., 133 (2005), 2401-2408. http://dx.doi.org/10.2307/4097881
- Grimmer, R. C., Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.
- Heinz, H. P., On the behaviour of measure of noncompactness with respect to differentiation and integration of rector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.
- Kavitha, V., Baleanu, D., Grayna, J., Measure pseudo almost automorphic solution to second order fractional impulsive neutral differential equation, AIMS Math., 6(8) (2021), 8352-8366. http://dx.doi.org/10.3934/math.2021484
- Kavitha, V., Arjunan, M., Baleanu, D., Grayna, J., Weighted pseudo almost automorphic functions with applications to impulsive fractional integro-differential equation, An. S¸tiint¸. Univ. Ovidius Constant¸a Ser. Mat., 31(1) (2023), 143-166. https://doi.org/10.2478/auom-2023-0007
- Liang, J., Zhang, J., Xiao, T., Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340(2) (2008), 1493-1499. https://doi.org/10.1016/j.jmaa.2007.09.065
- Mahto, L., Abbas, S., PC-almost automorphic solution of impulsive fractional diferential equations, Mediter. J. Math., 12(3) (2015), 771-790. http://dx.doi.org/10.1007/s00009-014-0449-3
- Milman, V. D., Myshkis, A. D., On the stability of motion in presence of impulses, Sib. Math. J., 1 (1960), 233-237.
- Mishra, I., Bahuguna, D., Abbas, S., Existence of almost automorphic solutions of neutral functional differential equation, Nonlinear Dyn. Syst. Theory., 11(2) (2011), 165-172.
- Mophoua, G., N’Guerekata, G. M., On some classes of almost automorphic functions and applications to fractional differential equations, Compu. Math. Appl., 59 (2010), 1310-1317.
http://dx.doi.org/10.1016/j.camwa.2009.05.008
- Mönch, H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985-999.
- N’Guerekata, G. M., Sur les solutions presqu’Automorphes d’´equations differentielles abstraites [On almost automorphic solutions of abstract differential equations], Ann. Sci. Math. Quebec., 5 (1981), 69-79.
- N’Guerekata, G. M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic, New York, 2001.
- N’Guerekata, G. M., Topics in Almost Automorphy, Springer, New York, Boston, Dordrecht, London, Moscow, 2005.
- N’Guerekata, G. M., Spectral Teory for Bounded Functions and Applications to Evolution Equations, Nova Science Pub. NY, 2017.
- Rezoug, N., Benchohra, M., Ezzinbi, K., Asymptotically automorphic solutions of abstract fractional evolution equations with non-instantaneous impulses, Surv. Math. Appl., 17 (2022), 113-138.
- Rezoug, N., Salim, A., Benchohra, M., Asymptotically almost automorphy for impulsive integrodifferential evolution equations with infinite time delay via M¨onch fixed point, Evol. Equ. Control Theory, 13(4) (2024), 989-1014. http://dx.doi.org/10.3934/eect.2024014
- Santos, J. P. C., Cuevas, C., Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23(9) (2010), 960-965. https://doi.org/10.1016/j.aml.2010.04.016
- Singh, V., Pandey, D., Doubly weighted pseudo almost automorphic solutions for two-term fractional order differential equations, J. Nonlinear Evol. Equ. Appl., (4) (2018), 39-56.
- Svetlin, G. G., Akgöl, S. D., Kuş, M. E., Existence of solutions for first order impulsive periodic boundary value problems on time scales, Filomat, 37(10) (2023), 3029-3042. https://doi.org/10.2298/FIL2310029G
- Tokmak Fen, F., Fen, M. O., Modulo periodic Poisson stable solutions of dynamic equations on a time scale, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(4) (2023), 907-920. https://doi.org/10.31801/cfsuasmas.1220565
- Veech, W., Almost automorphic functions, Proc. Natl. Acad. Sci., 49 (1963), 462-464.
- Xia, Z., Piecewise asymptotically almost periodic solution of neutral Volterra integrodifferential equations with impulsive effects, Turkish J. Math., 41(6) (2017), 23. https://doi.org/10.3906/mat-1408-11
- Yan, Z., Zhang, H., Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay, Electron. J. Differential Equations, (206) (2013), 29 pp.
- Zheng, X. J., Ye, C. Z., Ding, H. S., Asymptotically almost automorphic solutions to nonautonomous semilinear evolution equations, Afr. Diaspora J. Math., 12(2) (2011), 104-112.
- Zhao, Z., Chang, Y., Nieto, J., Almost automorphic and pseudo-almost automorphic mild solutions to an abstract differential equation in Banach spaces, Nonlinear Anal. Theo. Meth. Appl., 72 (2010), 1886-1894. http://dx.doi.org/10.1016/j.na.2009.09.028