Research Article
BibTex RIS Cite

Nonlinear semilinear integro-differential evolution equations with impulsive effects

Year 2024, Volume: 73 Issue: 4, 894 - 917
https://doi.org/10.31801/cfsuasmas.1357985

Abstract

In this paper, we investigate the existence of a piecewise asymptotically almost automorphic mild solution to some classes of integro-differential equations with impulsive effects in Banach space. The working tools are based on the Mönch’s fixed point theorem, the concept of measures of noncompactness theorem and resolvent operator. In order to illustrate our main results, we study the piecewise asymptotically almost automorphic solution of the impulsive differential equations.

References

  • Abbas, S., Mahto, L., Hafayed, M., Alimi, A. M., Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients, Neurocomputing, 142 (2014), 326-334. https://doi.org/10.1016/j.neucom.2014.04.028
  • Akgöl, S. D., Asymptotic equivalence of impulsive dynamic equations on time scales, Hacet. J. Math. Stat., 52(2) (2023), 277-291. https://doi.org/10.15672/hujms.1103384
  • Akgöl, S. D., Existence of solutions for impulsive boundary value problems on infinite intervals, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(3) (2023), 721-736. https://doi.org/10.31801/cfsuasmas.1186785
  • Akgöl, S. D., Oscillation of impulsive linear differential equations with discontinuous solutions, Bull. Aust. Math. Soc., 107(1) (2023), 112-124. https://doi.org/10.1017/s0004972722000429
  • Araya, D., Lizama, C., Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69(11) (2008), 3692-3705. http://dx.doi.org/10.1016/j.na.2007.10.004
  • Arjunan, M. M., Mlaiki, N., Kavitha, V., Abdeljawad, T., On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space, AIMS Math., 8(1) (2023), 1384-1409. https://doi.org/10.3934/math.2023070
  • Bainov, D. D., Simeonov, P. S., Impulsive Differential Equations: Periodic Solutions and Applications, In: Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 66. Harlow, Longman Scientific Technical, New York, 1993.
  • Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Note in Pure App. Math., New York, 1980.
  • Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26928-8
  • Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-34877-8
  • Benkhettou, N., Aissani, K., Salim, A., Benchohra, M., Tunc, C., Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim., 6 (2022), 79-94.
  • Benkhettou, N., Salim, A., Aissani, K., Benchohra, M., Karapınar, E., Non-instantaneous impulsive fractional integro-differential equations with state-dependent delay, Sahand Commun. Math. Anal., 19 (2022), 93-109. https://doi.org/10.22130/scma.2022.542200.1014
  • Bensalem, A., Salim, A., Ahmad, B., Benchohra, M., Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fr´echet spaces, CUBO., 25(2) (2023), 231–250. https://doi.org/10.56754/0719-0646.2502.231
  • Bensalem, A., Salim, A., Benchohra, M., Ulam-Hyers-Rassias stability of neutral functional integrodifferential evolution equations with non-instantaneous impulses on an unbounded interval, Qual. Theory Dyn. Syst., 22 (2023), 29 pages. https://doi.org/10.1007/s12346-023-00787-y
  • Bensalem, A., Salim, A., Benchohra, M., Feckan, M., Approximate controllability of neutral functional integro-differential equations with state-dependent delay and non-instantaneous impulses, Mathematics, 11 (2023), 1-17. https://doi.org/10.3390/math11071667
  • Bochner, S., Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci., 52 (1964), 907-910.
  • Caraballo, T., Cheban, D., Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition, J. Differential Equations, 246(1) (2009), 108-128. http://dx.doi.org/10.1016/j.jde.2008.04.001
  • Cao, J., Yang, Q., Huang, Z., Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stoch.: An Int. J. Probab. Stoch. Processes, 83 (2011), 259-275. http://dx.doi.org/10.1080/17442508.2010.533375
  • Cao, J., Huang, Z., N’Gu´er´ekata, G. M., Existence of asymptotically almost automorphic mild solutions for nonautonomous semilinear evolution equations, Elec. J. Differential Equations, 2018(37) (2018), 16 pp.
  • Chavez, A., Pinto, M., Zavaleta, U., On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications, J. Math. Anal. Appl., 494(1) (2021), 38 pp. http://dx.doi.org/10.1016/j.jmaa.2020.124395
  • Chen, P., Li, Y., Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744. http://dx.doi.org/10.1007/s00025-012-0230-5
  • Corduneanu, C., Integral Equations and Stability of Feedback Systems, Acadimic Press, New York, 1973.
  • Desch, W., Grimmer, R., Schappacher, W., Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
  • Dianaga, T., N’Guerekata, G. M., Almost automorphic solutions to some classes of partial evolution equations, Appl. Math. Lett., 20 (2007), 462-466. http://dx.doi.org/10.1016/j.aml.2006.05.015
  • Ezzinbi, K., N’Guerekata, G. M., Almost automorphic solutions for some partial functional differential equations, J. Math. Anal. Appl., 328 (1) (2007), 344-358. https://doi.org/10.1016/j.jmaa.2006.05.036
  • Fen, M. O., Fen, F. T., Homoclinic and heteroclinic motions in hybrid systems with impacts, Mathematica Slovaca., 67(5) (2017), 1179-1188. https://doi.org/10.1515/ms-2017-0041
  • Fen, M. O., Fen, F. T., Replication of period-doubling route to chaos in impulsive systems, Electron. J. Qual. Theory Differ. Equ., 2019(58) (2019), 1-20. https://doi.org/10.14232/ejqtde.2019.1.58
  • Fen, M. O., Fen, F. T., Unpredictability in quasilinear non-autonomous systems with regular moments of impulses, Mediterr. J. Math., 20(4) (2023), 191. https://doi.org/10.1007/s00009-023-02401-6
  • Goldstein, J. A., N’Guerekata, G. M., Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc., 133 (2005), 2401-2408. http://dx.doi.org/10.2307/4097881
  • Grimmer, R. C., Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.
  • Heinz, H. P., On the behaviour of measure of noncompactness with respect to differentiation and integration of rector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.
  • Kavitha, V., Baleanu, D., Grayna, J., Measure pseudo almost automorphic solution to second order fractional impulsive neutral differential equation, AIMS Math., 6(8) (2021), 8352-8366. http://dx.doi.org/10.3934/math.2021484
  • Kavitha, V., Arjunan, M., Baleanu, D., Grayna, J., Weighted pseudo almost automorphic functions with applications to impulsive fractional integro-differential equation, An. S¸tiint¸. Univ. Ovidius Constant¸a Ser. Mat., 31(1) (2023), 143-166. https://doi.org/10.2478/auom-2023-0007
  • Liang, J., Zhang, J., Xiao, T., Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340(2) (2008), 1493-1499. https://doi.org/10.1016/j.jmaa.2007.09.065
  • Mahto, L., Abbas, S., PC-almost automorphic solution of impulsive fractional diferential equations, Mediter. J. Math., 12(3) (2015), 771-790. http://dx.doi.org/10.1007/s00009-014-0449-3
  • Milman, V. D., Myshkis, A. D., On the stability of motion in presence of impulses, Sib. Math. J., 1 (1960), 233-237.
  • Mishra, I., Bahuguna, D., Abbas, S., Existence of almost automorphic solutions of neutral functional differential equation, Nonlinear Dyn. Syst. Theory., 11(2) (2011), 165-172.
  • Mophoua, G., N’Guerekata, G. M., On some classes of almost automorphic functions and applications to fractional differential equations, Compu. Math. Appl., 59 (2010), 1310-1317. http://dx.doi.org/10.1016/j.camwa.2009.05.008
  • Mönch, H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985-999.
  • N’Guerekata, G. M., Sur les solutions presqu’Automorphes d’´equations differentielles abstraites [On almost automorphic solutions of abstract differential equations], Ann. Sci. Math. Quebec., 5 (1981), 69-79.
  • N’Guerekata, G. M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic, New York, 2001.
  • N’Guerekata, G. M., Topics in Almost Automorphy, Springer, New York, Boston, Dordrecht, London, Moscow, 2005.
  • N’Guerekata, G. M., Spectral Teory for Bounded Functions and Applications to Evolution Equations, Nova Science Pub. NY, 2017.
  • Rezoug, N., Benchohra, M., Ezzinbi, K., Asymptotically automorphic solutions of abstract fractional evolution equations with non-instantaneous impulses, Surv. Math. Appl., 17 (2022), 113-138.
  • Rezoug, N., Salim, A., Benchohra, M., Asymptotically almost automorphy for impulsive integrodifferential evolution equations with infinite time delay via M¨onch fixed point, Evol. Equ. Control Theory, 13(4) (2024), 989-1014. http://dx.doi.org/10.3934/eect.2024014
  • Santos, J. P. C., Cuevas, C., Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23(9) (2010), 960-965. https://doi.org/10.1016/j.aml.2010.04.016
  • Singh, V., Pandey, D., Doubly weighted pseudo almost automorphic solutions for two-term fractional order differential equations, J. Nonlinear Evol. Equ. Appl., (4) (2018), 39-56.
  • Svetlin, G. G., Akgöl, S. D., Kuş, M. E., Existence of solutions for first order impulsive periodic boundary value problems on time scales, Filomat, 37(10) (2023), 3029-3042. https://doi.org/10.2298/FIL2310029G
  • Tokmak Fen, F., Fen, M. O., Modulo periodic Poisson stable solutions of dynamic equations on a time scale, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(4) (2023), 907-920. https://doi.org/10.31801/cfsuasmas.1220565
  • Veech, W., Almost automorphic functions, Proc. Natl. Acad. Sci., 49 (1963), 462-464.
  • Xia, Z., Piecewise asymptotically almost periodic solution of neutral Volterra integrodifferential equations with impulsive effects, Turkish J. Math., 41(6) (2017), 23. https://doi.org/10.3906/mat-1408-11
  • Yan, Z., Zhang, H., Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay, Electron. J. Differential Equations, (206) (2013), 29 pp.
  • Zheng, X. J., Ye, C. Z., Ding, H. S., Asymptotically almost automorphic solutions to nonautonomous semilinear evolution equations, Afr. Diaspora J. Math., 12(2) (2011), 104-112.
  • Zhao, Z., Chang, Y., Nieto, J., Almost automorphic and pseudo-almost automorphic mild solutions to an abstract differential equation in Banach spaces, Nonlinear Anal. Theo. Meth. Appl., 72 (2010), 1886-1894. http://dx.doi.org/10.1016/j.na.2009.09.028
Year 2024, Volume: 73 Issue: 4, 894 - 917
https://doi.org/10.31801/cfsuasmas.1357985

Abstract

References

  • Abbas, S., Mahto, L., Hafayed, M., Alimi, A. M., Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients, Neurocomputing, 142 (2014), 326-334. https://doi.org/10.1016/j.neucom.2014.04.028
  • Akgöl, S. D., Asymptotic equivalence of impulsive dynamic equations on time scales, Hacet. J. Math. Stat., 52(2) (2023), 277-291. https://doi.org/10.15672/hujms.1103384
  • Akgöl, S. D., Existence of solutions for impulsive boundary value problems on infinite intervals, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(3) (2023), 721-736. https://doi.org/10.31801/cfsuasmas.1186785
  • Akgöl, S. D., Oscillation of impulsive linear differential equations with discontinuous solutions, Bull. Aust. Math. Soc., 107(1) (2023), 112-124. https://doi.org/10.1017/s0004972722000429
  • Araya, D., Lizama, C., Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69(11) (2008), 3692-3705. http://dx.doi.org/10.1016/j.na.2007.10.004
  • Arjunan, M. M., Mlaiki, N., Kavitha, V., Abdeljawad, T., On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space, AIMS Math., 8(1) (2023), 1384-1409. https://doi.org/10.3934/math.2023070
  • Bainov, D. D., Simeonov, P. S., Impulsive Differential Equations: Periodic Solutions and Applications, In: Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 66. Harlow, Longman Scientific Technical, New York, 1993.
  • Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Note in Pure App. Math., New York, 1980.
  • Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26928-8
  • Benchohra, M., Karapınar, E., Lazreg, J. E., Salim, A., Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-34877-8
  • Benkhettou, N., Aissani, K., Salim, A., Benchohra, M., Tunc, C., Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim., 6 (2022), 79-94.
  • Benkhettou, N., Salim, A., Aissani, K., Benchohra, M., Karapınar, E., Non-instantaneous impulsive fractional integro-differential equations with state-dependent delay, Sahand Commun. Math. Anal., 19 (2022), 93-109. https://doi.org/10.22130/scma.2022.542200.1014
  • Bensalem, A., Salim, A., Ahmad, B., Benchohra, M., Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fr´echet spaces, CUBO., 25(2) (2023), 231–250. https://doi.org/10.56754/0719-0646.2502.231
  • Bensalem, A., Salim, A., Benchohra, M., Ulam-Hyers-Rassias stability of neutral functional integrodifferential evolution equations with non-instantaneous impulses on an unbounded interval, Qual. Theory Dyn. Syst., 22 (2023), 29 pages. https://doi.org/10.1007/s12346-023-00787-y
  • Bensalem, A., Salim, A., Benchohra, M., Feckan, M., Approximate controllability of neutral functional integro-differential equations with state-dependent delay and non-instantaneous impulses, Mathematics, 11 (2023), 1-17. https://doi.org/10.3390/math11071667
  • Bochner, S., Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci., 52 (1964), 907-910.
  • Caraballo, T., Cheban, D., Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition, J. Differential Equations, 246(1) (2009), 108-128. http://dx.doi.org/10.1016/j.jde.2008.04.001
  • Cao, J., Yang, Q., Huang, Z., Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stoch.: An Int. J. Probab. Stoch. Processes, 83 (2011), 259-275. http://dx.doi.org/10.1080/17442508.2010.533375
  • Cao, J., Huang, Z., N’Gu´er´ekata, G. M., Existence of asymptotically almost automorphic mild solutions for nonautonomous semilinear evolution equations, Elec. J. Differential Equations, 2018(37) (2018), 16 pp.
  • Chavez, A., Pinto, M., Zavaleta, U., On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications, J. Math. Anal. Appl., 494(1) (2021), 38 pp. http://dx.doi.org/10.1016/j.jmaa.2020.124395
  • Chen, P., Li, Y., Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744. http://dx.doi.org/10.1007/s00025-012-0230-5
  • Corduneanu, C., Integral Equations and Stability of Feedback Systems, Acadimic Press, New York, 1973.
  • Desch, W., Grimmer, R., Schappacher, W., Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
  • Dianaga, T., N’Guerekata, G. M., Almost automorphic solutions to some classes of partial evolution equations, Appl. Math. Lett., 20 (2007), 462-466. http://dx.doi.org/10.1016/j.aml.2006.05.015
  • Ezzinbi, K., N’Guerekata, G. M., Almost automorphic solutions for some partial functional differential equations, J. Math. Anal. Appl., 328 (1) (2007), 344-358. https://doi.org/10.1016/j.jmaa.2006.05.036
  • Fen, M. O., Fen, F. T., Homoclinic and heteroclinic motions in hybrid systems with impacts, Mathematica Slovaca., 67(5) (2017), 1179-1188. https://doi.org/10.1515/ms-2017-0041
  • Fen, M. O., Fen, F. T., Replication of period-doubling route to chaos in impulsive systems, Electron. J. Qual. Theory Differ. Equ., 2019(58) (2019), 1-20. https://doi.org/10.14232/ejqtde.2019.1.58
  • Fen, M. O., Fen, F. T., Unpredictability in quasilinear non-autonomous systems with regular moments of impulses, Mediterr. J. Math., 20(4) (2023), 191. https://doi.org/10.1007/s00009-023-02401-6
  • Goldstein, J. A., N’Guerekata, G. M., Almost automorphic solutions of semilinear evolution equations, Proc. Amer. Math. Soc., 133 (2005), 2401-2408. http://dx.doi.org/10.2307/4097881
  • Grimmer, R. C., Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.
  • Heinz, H. P., On the behaviour of measure of noncompactness with respect to differentiation and integration of rector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.
  • Kavitha, V., Baleanu, D., Grayna, J., Measure pseudo almost automorphic solution to second order fractional impulsive neutral differential equation, AIMS Math., 6(8) (2021), 8352-8366. http://dx.doi.org/10.3934/math.2021484
  • Kavitha, V., Arjunan, M., Baleanu, D., Grayna, J., Weighted pseudo almost automorphic functions with applications to impulsive fractional integro-differential equation, An. S¸tiint¸. Univ. Ovidius Constant¸a Ser. Mat., 31(1) (2023), 143-166. https://doi.org/10.2478/auom-2023-0007
  • Liang, J., Zhang, J., Xiao, T., Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340(2) (2008), 1493-1499. https://doi.org/10.1016/j.jmaa.2007.09.065
  • Mahto, L., Abbas, S., PC-almost automorphic solution of impulsive fractional diferential equations, Mediter. J. Math., 12(3) (2015), 771-790. http://dx.doi.org/10.1007/s00009-014-0449-3
  • Milman, V. D., Myshkis, A. D., On the stability of motion in presence of impulses, Sib. Math. J., 1 (1960), 233-237.
  • Mishra, I., Bahuguna, D., Abbas, S., Existence of almost automorphic solutions of neutral functional differential equation, Nonlinear Dyn. Syst. Theory., 11(2) (2011), 165-172.
  • Mophoua, G., N’Guerekata, G. M., On some classes of almost automorphic functions and applications to fractional differential equations, Compu. Math. Appl., 59 (2010), 1310-1317. http://dx.doi.org/10.1016/j.camwa.2009.05.008
  • Mönch, H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985-999.
  • N’Guerekata, G. M., Sur les solutions presqu’Automorphes d’´equations differentielles abstraites [On almost automorphic solutions of abstract differential equations], Ann. Sci. Math. Quebec., 5 (1981), 69-79.
  • N’Guerekata, G. M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic, New York, 2001.
  • N’Guerekata, G. M., Topics in Almost Automorphy, Springer, New York, Boston, Dordrecht, London, Moscow, 2005.
  • N’Guerekata, G. M., Spectral Teory for Bounded Functions and Applications to Evolution Equations, Nova Science Pub. NY, 2017.
  • Rezoug, N., Benchohra, M., Ezzinbi, K., Asymptotically automorphic solutions of abstract fractional evolution equations with non-instantaneous impulses, Surv. Math. Appl., 17 (2022), 113-138.
  • Rezoug, N., Salim, A., Benchohra, M., Asymptotically almost automorphy for impulsive integrodifferential evolution equations with infinite time delay via M¨onch fixed point, Evol. Equ. Control Theory, 13(4) (2024), 989-1014. http://dx.doi.org/10.3934/eect.2024014
  • Santos, J. P. C., Cuevas, C., Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23(9) (2010), 960-965. https://doi.org/10.1016/j.aml.2010.04.016
  • Singh, V., Pandey, D., Doubly weighted pseudo almost automorphic solutions for two-term fractional order differential equations, J. Nonlinear Evol. Equ. Appl., (4) (2018), 39-56.
  • Svetlin, G. G., Akgöl, S. D., Kuş, M. E., Existence of solutions for first order impulsive periodic boundary value problems on time scales, Filomat, 37(10) (2023), 3029-3042. https://doi.org/10.2298/FIL2310029G
  • Tokmak Fen, F., Fen, M. O., Modulo periodic Poisson stable solutions of dynamic equations on a time scale, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(4) (2023), 907-920. https://doi.org/10.31801/cfsuasmas.1220565
  • Veech, W., Almost automorphic functions, Proc. Natl. Acad. Sci., 49 (1963), 462-464.
  • Xia, Z., Piecewise asymptotically almost periodic solution of neutral Volterra integrodifferential equations with impulsive effects, Turkish J. Math., 41(6) (2017), 23. https://doi.org/10.3906/mat-1408-11
  • Yan, Z., Zhang, H., Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay, Electron. J. Differential Equations, (206) (2013), 29 pp.
  • Zheng, X. J., Ye, C. Z., Ding, H. S., Asymptotically almost automorphic solutions to nonautonomous semilinear evolution equations, Afr. Diaspora J. Math., 12(2) (2011), 104-112.
  • Zhao, Z., Chang, Y., Nieto, J., Almost automorphic and pseudo-almost automorphic mild solutions to an abstract differential equation in Banach spaces, Nonlinear Anal. Theo. Meth. Appl., 72 (2010), 1886-1894. http://dx.doi.org/10.1016/j.na.2009.09.028
There are 54 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Research Articles
Authors

Noreddine Rezoug 0000-0003-3504-8736

Abdelkrim Salım 0000-0003-2795-6224

Mouffak Benchohra 0000-0003-3063-9449

Publication Date
Submission Date September 10, 2023
Acceptance Date June 24, 2024
Published in Issue Year 2024 Volume: 73 Issue: 4

Cite

APA Rezoug, N., Salım, A., & Benchohra, M. (n.d.). Nonlinear semilinear integro-differential evolution equations with impulsive effects. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 894-917. https://doi.org/10.31801/cfsuasmas.1357985
AMA Rezoug N, Salım A, Benchohra M. Nonlinear semilinear integro-differential evolution equations with impulsive effects. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73(4):894-917. doi:10.31801/cfsuasmas.1357985
Chicago Rezoug, Noreddine, Abdelkrim Salım, and Mouffak Benchohra. “Nonlinear Semilinear Integro-Differential Evolution Equations With Impulsive Effects”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 4 n.d.: 894-917. https://doi.org/10.31801/cfsuasmas.1357985.
EndNote Rezoug N, Salım A, Benchohra M Nonlinear semilinear integro-differential evolution equations with impulsive effects. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 4 894–917.
IEEE N. Rezoug, A. Salım, and M. Benchohra, “Nonlinear semilinear integro-differential evolution equations with impulsive effects”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 4, pp. 894–917, doi: 10.31801/cfsuasmas.1357985.
ISNAD Rezoug, Noreddine et al. “Nonlinear Semilinear Integro-Differential Evolution Equations With Impulsive Effects”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/4 (n.d.), 894-917. https://doi.org/10.31801/cfsuasmas.1357985.
JAMA Rezoug N, Salım A, Benchohra M. Nonlinear semilinear integro-differential evolution equations with impulsive effects. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.;73:894–917.
MLA Rezoug, Noreddine et al. “Nonlinear Semilinear Integro-Differential Evolution Equations With Impulsive Effects”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 4, pp. 894-17, doi:10.31801/cfsuasmas.1357985.
Vancouver Rezoug N, Salım A, Benchohra M. Nonlinear semilinear integro-differential evolution equations with impulsive effects. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73(4):894-917.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.