Research Article
BibTex RIS Cite
Year 2024, Volume: 73 Issue: 4, 1134 - 1152
https://doi.org/10.31801/cfsuasmas.1503136

Abstract

Project Number

119F262

References

  • Acu, A. M., Hodis, L., Raşa, I., Multivariate weighted Kantorovich operators, Math. Found. Comput., 3(2) (2020), 117-124. https://doi.org/10.3934/mfc.2020009
  • Angeloni, L., Vinti, G., Convergence in variation and rate of approximation for nonlinear integral operators of convolution type, Results Math., 49 (2006), 1-23. https://doi.org/10.1007/s00025-006-0208-2
  • Angeloni, L., Vinti, G., Erratum to: Convergence in variation and rate of approximation for nonlinear integral operators of convolution type, Results Math., 57 (2010), 387-391. https://doi.org/10.1007/s00025-010-0019-3
  • Angeloni, L., Vinti, G., Discrete operators of sampling type and approximation in φ-variation, Math. Nachr., 291(4) (2018), 546-555. https://doi.org/10.1002/mana.201600508
  • Angeloni, L., Costarelli, D., Vinti, G., A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math., 43 (2018), 755-767. https://doi.org/10.5186/aasfm.2018.4343
  • Aslan, İ., Approximation by sampling type discrete operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 969-980. https://doi.org/10.31801/cfsuasmas.671237
  • Aslan, İ., Approximation by sampling-type nonlinear discrete operators in phi-variation, Filomat, 35(8) (2021), 2731-2746. https://doi.org/10.2298/fil2108731a
  • Aslan, İ., Duman, O., A summability process on Baskakov-type approximation, Period. Math. Hungar., 72(2) (2016), 186-199. https://doi.org/10.1007/s10998-016-0120-9
  • Aslan, İ., Duman, O., Approximation by nonlinear integral operators via summability process, Math. Nachr., 293(3) (2020), 430-448. https://doi.org/10.1002/mana.201800187
  • Aslan, İ., Duman, O., Summability on Mellin-type nonlinear integral operators, Integral Transform. Spec. Funct., 30(6) (2019), 492-511. https://doi.org/10.1080/10652469.2019.1594209
  • Aslan, İ., Duman, O., Characterization of absolute and uniform continuity, Hacet. J. Math. Stat., 49(5) (2020), 1550-1565. https://doi.org/10.15672/hujms.585581
  • Bardaro, C., Butzer, P. L., Stens, R. L., Vinti, G., Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process., 6 (2007), 29-52. https://doi.org/10.1007/bf03549462
  • Bardaro, C., Butzer, P. L., Stens, R. L., Vinti, G., Prediction by samples from the past with error estimates covering discontinuous signals, IEEE Trans. Inform. Theory, 56(1) (2010), 614-633. https://doi.org/10.1109/TIT.2009.2034793
  • Bardaro, C., Vinti, G., A general approach to the convergence theorems of generalized sampling series, Appl. Anal., 64 (1997), 203-217. https://doi.org/10.1080/00036819708840531
  • Bede, B., Schwab, E. D., Nobuhara, H., Rudas, I. J., Approximation by Shepard type pseudolinear operators and applications to image processing, Int. J. Approx. Reason., 1(50) (2009), 21-36. https://doi.org/10.1016/j.ijar.2008.01.007
  • Bell, H. T., A-Summability, Dissertation, (Lehigh University, Bethlehem, Pa., 1971).
  • Bell, H. T., Order summability and almost convergence, Proc. Amer. Math. Soc., 38 (1973), 548-552.
  • Bezuglaya L., Katsnelson, V., The sampling theorem for functions with limited multi-band spectrum I, Z. Anal. Anwend., 12 (1994), 511-534.
  • Boccuto, A., Dimitriou, X., Rates of approximation for general sampling-type operators in the setting of filter convergence, Appl. Math. Comput., 229 (2014), 214-226. https://doi.org/10.1016/j.amc.2013.12.044
  • Butzer P. L., Stens, R. L., Prediction of non-bandlimited signals from past samples in terms of splines of low degree, Math. Nachr., 132 (1987), 115-130. https://doi.org/10.1002/mana.19871320109
  • Butzer P. L., Stens, R. L., Linear predictions in terms of samples from the past: an overview, Proceedings of Conference on Numerical Methods and Approximation Theory III (G. V. Milovanovic, ed.), University of Nis, Yugoslavia, (1988), 1-22.
  • Butzer, P. L., Splettst¨osser, W., Stens, R. L., The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein, 90 (1988), 1-70.
  • Butzer, P. L., Stens, R. L., Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Rev., 34(1) (1992), 40-53. https://doi.org/10.1137/1034002
  • Costarelli, D., Piconi, M., Vinti, G., The multivariate Durrmeyer-sampling type operators in functional spaces. Dolomites Res. Notes Approx., 15(5) (2022), 128-144. https://doi.org/10.14658/PUPJ-DRNA-2022-5-11
  • Costarelli, D., Vinti, G., Approximation by nonlinear multivariate sampling Kantorovich type operators and applications to image processing, Numer. Funct. Anal. Optim., 34(8) (2013), 819-844. https://doi.org/10.1080/01630563.2013.767833
  • Gökçer, T. Y., Aslan, İ., Approximation by Kantorovich-type max-min operators and its applications, Appl. Math. Comput., 423, (2022), 127011. https://doi.org/10.1016/j.amc.2022.127011
  • Gökçer, T. Y., Duman, O., Summation process by max-product operators, Computational Analysis, AMAT 2015, Univ. Econ. & Technol. Ankara, Turkey, (2016), pp. 59-67. https://doi.org/10.1007/978-3-319-28443-9 4
  • Hardy, G. H., Divergent Series, Oxford Univ. Press, London, 1949.
  • Jurkat, W. B., Peyerimhoff, A., Fourier effectiveness and order summability, J. Approx. Theory, 4 (1971), 231-244. https://doi.org/10.1016/0021-9045(71)90011-6
  • Jurkat, W. B., Peyerimhoff, A., Inclusion theorems and order summability, J. Approx. Theory, 4 (1971), 245-262. https://doi.org/10.1016/0021-9045(71)90012-8
  • Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190. https://doi.org/10.1007/BF02393648
  • Mantellini, I., Vinti, G., Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math., 81(1) (2003), 55-71. https://doi.org/10.4064/ap81-1-5
  • Mohapatra, R. N., Quantitative results on almost convergence of a sequence of positive linear operators, J. Approx. Theory, 20 (1977), 239-250. https://doi.org/10.1016/0021-9045(77)90058-2
  • Ries, S., Stens, R. L., Approximation by generalized sampling series, Proceedings of the International Conference on Constructive Theory of Functions (Varna, 1984), Bulgarian Academy of Science, Sofia, 1984, pp. 746-756.
  • Smith, D. A., Ford, W. F., Acceleration of linear and logarithmical convergence, Siam J. Numer. Anal., 16 (1979), 223-240. https://doi.org/10.1137/0716017
  • Stieglitz, M., Eine verallgemeinerung des begriffs der fastkonvergenz, Math. Japon., 18(1) (1973), 53-70.
  • Swetits, J. J., Note: On summability and positive linear operators, J. Approx. Theory, 25(2) (1979), 186-188. https://doi.org/10.1016/0021-9045(79)90008-x
  • Turan, C., Duman, O., Statistical convergence on timescales and its characterizations, In Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012, (2013), 57-71, Springer New York. https://doi.org/10.1007/978-1-4614-6393-1 3
  • Wimp, J., Sequence Transformations and Their Applications, Academic Press, New York, 1981.

Nonlinear approximation by $N$-dimensional sampling type discrete operators with applications

Year 2024, Volume: 73 Issue: 4, 1134 - 1152
https://doi.org/10.31801/cfsuasmas.1503136

Abstract

In this paper, we explore $N$-dimensional nonlinear discrete operators, closely related to generalized sampling series. We investigate their approximation properties by using the supremum norm and employ a summability method to generalize the discrete operators. The order of convergence is studied by using suitable Lipschitz classes of uniformly continuous functions. We exemplify kernel functions that meet the necessary conditions. Additionally, in the final section of the paper, we propose an operator-based method for digital image zooming.

Ethical Statement

This study is supported by the Scientific and Technological Research Council of Turkey

Supporting Institution

Scientific and Technological Research Council of Türkiye

Project Number

119F262

References

  • Acu, A. M., Hodis, L., Raşa, I., Multivariate weighted Kantorovich operators, Math. Found. Comput., 3(2) (2020), 117-124. https://doi.org/10.3934/mfc.2020009
  • Angeloni, L., Vinti, G., Convergence in variation and rate of approximation for nonlinear integral operators of convolution type, Results Math., 49 (2006), 1-23. https://doi.org/10.1007/s00025-006-0208-2
  • Angeloni, L., Vinti, G., Erratum to: Convergence in variation and rate of approximation for nonlinear integral operators of convolution type, Results Math., 57 (2010), 387-391. https://doi.org/10.1007/s00025-010-0019-3
  • Angeloni, L., Vinti, G., Discrete operators of sampling type and approximation in φ-variation, Math. Nachr., 291(4) (2018), 546-555. https://doi.org/10.1002/mana.201600508
  • Angeloni, L., Costarelli, D., Vinti, G., A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math., 43 (2018), 755-767. https://doi.org/10.5186/aasfm.2018.4343
  • Aslan, İ., Approximation by sampling type discrete operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 969-980. https://doi.org/10.31801/cfsuasmas.671237
  • Aslan, İ., Approximation by sampling-type nonlinear discrete operators in phi-variation, Filomat, 35(8) (2021), 2731-2746. https://doi.org/10.2298/fil2108731a
  • Aslan, İ., Duman, O., A summability process on Baskakov-type approximation, Period. Math. Hungar., 72(2) (2016), 186-199. https://doi.org/10.1007/s10998-016-0120-9
  • Aslan, İ., Duman, O., Approximation by nonlinear integral operators via summability process, Math. Nachr., 293(3) (2020), 430-448. https://doi.org/10.1002/mana.201800187
  • Aslan, İ., Duman, O., Summability on Mellin-type nonlinear integral operators, Integral Transform. Spec. Funct., 30(6) (2019), 492-511. https://doi.org/10.1080/10652469.2019.1594209
  • Aslan, İ., Duman, O., Characterization of absolute and uniform continuity, Hacet. J. Math. Stat., 49(5) (2020), 1550-1565. https://doi.org/10.15672/hujms.585581
  • Bardaro, C., Butzer, P. L., Stens, R. L., Vinti, G., Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process., 6 (2007), 29-52. https://doi.org/10.1007/bf03549462
  • Bardaro, C., Butzer, P. L., Stens, R. L., Vinti, G., Prediction by samples from the past with error estimates covering discontinuous signals, IEEE Trans. Inform. Theory, 56(1) (2010), 614-633. https://doi.org/10.1109/TIT.2009.2034793
  • Bardaro, C., Vinti, G., A general approach to the convergence theorems of generalized sampling series, Appl. Anal., 64 (1997), 203-217. https://doi.org/10.1080/00036819708840531
  • Bede, B., Schwab, E. D., Nobuhara, H., Rudas, I. J., Approximation by Shepard type pseudolinear operators and applications to image processing, Int. J. Approx. Reason., 1(50) (2009), 21-36. https://doi.org/10.1016/j.ijar.2008.01.007
  • Bell, H. T., A-Summability, Dissertation, (Lehigh University, Bethlehem, Pa., 1971).
  • Bell, H. T., Order summability and almost convergence, Proc. Amer. Math. Soc., 38 (1973), 548-552.
  • Bezuglaya L., Katsnelson, V., The sampling theorem for functions with limited multi-band spectrum I, Z. Anal. Anwend., 12 (1994), 511-534.
  • Boccuto, A., Dimitriou, X., Rates of approximation for general sampling-type operators in the setting of filter convergence, Appl. Math. Comput., 229 (2014), 214-226. https://doi.org/10.1016/j.amc.2013.12.044
  • Butzer P. L., Stens, R. L., Prediction of non-bandlimited signals from past samples in terms of splines of low degree, Math. Nachr., 132 (1987), 115-130. https://doi.org/10.1002/mana.19871320109
  • Butzer P. L., Stens, R. L., Linear predictions in terms of samples from the past: an overview, Proceedings of Conference on Numerical Methods and Approximation Theory III (G. V. Milovanovic, ed.), University of Nis, Yugoslavia, (1988), 1-22.
  • Butzer, P. L., Splettst¨osser, W., Stens, R. L., The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein, 90 (1988), 1-70.
  • Butzer, P. L., Stens, R. L., Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Rev., 34(1) (1992), 40-53. https://doi.org/10.1137/1034002
  • Costarelli, D., Piconi, M., Vinti, G., The multivariate Durrmeyer-sampling type operators in functional spaces. Dolomites Res. Notes Approx., 15(5) (2022), 128-144. https://doi.org/10.14658/PUPJ-DRNA-2022-5-11
  • Costarelli, D., Vinti, G., Approximation by nonlinear multivariate sampling Kantorovich type operators and applications to image processing, Numer. Funct. Anal. Optim., 34(8) (2013), 819-844. https://doi.org/10.1080/01630563.2013.767833
  • Gökçer, T. Y., Aslan, İ., Approximation by Kantorovich-type max-min operators and its applications, Appl. Math. Comput., 423, (2022), 127011. https://doi.org/10.1016/j.amc.2022.127011
  • Gökçer, T. Y., Duman, O., Summation process by max-product operators, Computational Analysis, AMAT 2015, Univ. Econ. & Technol. Ankara, Turkey, (2016), pp. 59-67. https://doi.org/10.1007/978-3-319-28443-9 4
  • Hardy, G. H., Divergent Series, Oxford Univ. Press, London, 1949.
  • Jurkat, W. B., Peyerimhoff, A., Fourier effectiveness and order summability, J. Approx. Theory, 4 (1971), 231-244. https://doi.org/10.1016/0021-9045(71)90011-6
  • Jurkat, W. B., Peyerimhoff, A., Inclusion theorems and order summability, J. Approx. Theory, 4 (1971), 245-262. https://doi.org/10.1016/0021-9045(71)90012-8
  • Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190. https://doi.org/10.1007/BF02393648
  • Mantellini, I., Vinti, G., Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math., 81(1) (2003), 55-71. https://doi.org/10.4064/ap81-1-5
  • Mohapatra, R. N., Quantitative results on almost convergence of a sequence of positive linear operators, J. Approx. Theory, 20 (1977), 239-250. https://doi.org/10.1016/0021-9045(77)90058-2
  • Ries, S., Stens, R. L., Approximation by generalized sampling series, Proceedings of the International Conference on Constructive Theory of Functions (Varna, 1984), Bulgarian Academy of Science, Sofia, 1984, pp. 746-756.
  • Smith, D. A., Ford, W. F., Acceleration of linear and logarithmical convergence, Siam J. Numer. Anal., 16 (1979), 223-240. https://doi.org/10.1137/0716017
  • Stieglitz, M., Eine verallgemeinerung des begriffs der fastkonvergenz, Math. Japon., 18(1) (1973), 53-70.
  • Swetits, J. J., Note: On summability and positive linear operators, J. Approx. Theory, 25(2) (1979), 186-188. https://doi.org/10.1016/0021-9045(79)90008-x
  • Turan, C., Duman, O., Statistical convergence on timescales and its characterizations, In Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012, (2013), 57-71, Springer New York. https://doi.org/10.1007/978-1-4614-6393-1 3
  • Wimp, J., Sequence Transformations and Their Applications, Academic Press, New York, 1981.
There are 39 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Articles
Authors

İsmail Aslan 0000-0001-9753-6757

Project Number 119F262
Publication Date
Submission Date June 21, 2024
Acceptance Date September 2, 2024
Published in Issue Year 2024 Volume: 73 Issue: 4

Cite

APA Aslan, İ. (n.d.). Nonlinear approximation by $N$-dimensional sampling type discrete operators with applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 1134-1152. https://doi.org/10.31801/cfsuasmas.1503136
AMA Aslan İ. Nonlinear approximation by $N$-dimensional sampling type discrete operators with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73(4):1134-1152. doi:10.31801/cfsuasmas.1503136
Chicago Aslan, İsmail. “Nonlinear Approximation by $N$-Dimensional Sampling Type Discrete Operators With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 4 n.d.: 1134-52. https://doi.org/10.31801/cfsuasmas.1503136.
EndNote Aslan İ Nonlinear approximation by $N$-dimensional sampling type discrete operators with applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 4 1134–1152.
IEEE İ. Aslan, “Nonlinear approximation by $N$-dimensional sampling type discrete operators with applications”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 4, pp. 1134–1152, doi: 10.31801/cfsuasmas.1503136.
ISNAD Aslan, İsmail. “Nonlinear Approximation by $N$-Dimensional Sampling Type Discrete Operators With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/4 (n.d.), 1134-1152. https://doi.org/10.31801/cfsuasmas.1503136.
JAMA Aslan İ. Nonlinear approximation by $N$-dimensional sampling type discrete operators with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.;73:1134–1152.
MLA Aslan, İsmail. “Nonlinear Approximation by $N$-Dimensional Sampling Type Discrete Operators With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 4, pp. 1134-52, doi:10.31801/cfsuasmas.1503136.
Vancouver Aslan İ. Nonlinear approximation by $N$-dimensional sampling type discrete operators with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73(4):1134-52.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.