Research Article
BibTex RIS Cite

Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable shallow water wave equation

Year 2025, Volume: 74 Issue: 1, 1 - 16

Abstract

The (2+1)-dimensional conformable nonlinear shallow water wave equation is examined in this work. Initially, definitions and properties of suitable derivatives are presented. Subsequently, exact solutions to this equation are derived using the exp(–ϕ(ξ))-expansion and the modified extended tanh function methods. Then, a numerical method, namely the residual power series method, is utilized to obtain approximate solutions. The interplay between analytical and numerical approaches is explored to validate the solutions. This study fills a gap in the literature on fractional shallow water models, particularly in (2+1) dimensions, and offers new insights into wave dynamics governed by fractional derivatives. The physical implications of the findings are illustrated through 3D and 2D contour surfaces of some obtained data, offering insight into the physical interpretation of geometric structures. A table is also presented to compare the obtained results. These solutions highlight the practical uses of the investigated model and other nonlinear models in applied sciences. These techniques can potentially yield significant results in solving various fractional differential equations.

Supporting Institution

Nevşehir Hacı Bektaş Veli University

Project Number

HDP23F2

Thanks

This work was supported by Research Fund of the Nevşehir Hacı Bektaş Veli University. Project Number: HDP23F2.

References

  • Akbar, M. A., Mohd Ali, N. H., Solitary wave solutions of the fourth order Boussinesq equation through the exp(−ϕ(η))-expansion method, SpringerPlus, 3(1) (2014), 1-6. https://doi.org/10.1186/2193-1801-3-344
  • Akinyemi, L., Veeresha, P., Şenol, M., Rezazadeh, H., An efficient technique for generalized conformable Pochhammer-Chree models of longitudinal wave propagation of elastic rod, Indian J. Phys., 96(14) (2022), 4209-4218. https://doi.org/10.1007/s12648-022-02324-0
  • Akinyemi, L., Shallow ocean soliton and localized waves in extended (2+1)-dimensional nonlinear evolution equations, Phys. Lett. A, 463 (2023), 128668. https://doi.org/10.1016/j.physleta.2023.128668
  • Alam, L. M. B., Jiang, X., Exact and explicit traveling wave solution to the time-fractional phi-four and (2+1)-dimensional CBS equations using the modified extended tanh-function method in mathematical physics, PDE Appl. Math., 4 (2021), 100039. https://doi.org/10.1016/j.padiff.2021.100039
  • Alam, M. N., Iqbal, M., Hassan, M., Fayz-Al-Asad, M., Hossain, M. S., Tunç, C., Bifurcation, phase plane analysis and exact soliton solutions in the nonlinear Schrodinger equation with Atangana’s conformable derivative, Chaos Solit. Fractals, 182 (2024), 114724. https://doi.org/10.1016/j.chaos.2024.114724
  • Alquran, M., Analytical solutions of fractional foam drainage equation by residual power series method, Math. Sci., 8(4) (2014), 153-160. https://doi.org/10.1007/s40096-015-0141-1
  • Alquran, M., Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method, J. Appl. Anal. Comput., 5(4) (2015), 589-599. https://doi.org/10.11948/2015046
  • Arqub, O. A., Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5(1) (2013), 31-52. 10.5373/jaram.1447.051912
  • Arqub, O. A., El-Ajou, A., Bataineh, A. S., Hashim, I., A representation of the exact solution of generalized Lane-Emden equations using a new analytical method, Abstr. Appl. Anal., 2013, 365725. https://doi.org/10.1155/2013/378593
  • Arqub, O. A., El-Ajou, A., Momani, S., Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, J. Comput. Phys., 293 (2015), 385-399. https://doi.org/10.1016/j.jcp.2014.09.034
  • Az-Zobi, E. A., Alzoubi, W. A., Akinyemi, L., Şenol, M., Masaedeh, B. S., A variety of wave amplitudes for the conformable fractional (2+1)-dimensional Ito equation, Mod. Phys. Lett. B, 35(15) (2021), 2150254. https://doi.org/10.1142/S0217984921502547
  • Cenesiz, Y., Kurt, A., New fractional complex transform for conformable fractional partial differential equations, J. Appl. Math., Statistics and Informatics, 12(2) (2016), 41-47. https://doi.org/10.1515/jamsi-2016-0007
  • Duran, S., Durur, H., Yavuz, M., Yokus, A., Discussion of numerical and analytical techniques for the emerging fractional order Murnaghan model in materials science, Opt. Quantum Electron., 55(6) (2023), 571. https://doi.org/10.1007/s11082-023-04838-1
  • Duran, S., Yokus, A., Kilinc, G., A study on solitary wave solutions for the Zoomeron equation supported by two dimensional dynamics, Phys. Scripta, 98(12) (2023), 125265. https://doi.org/10.1088/1402-4896/ad0c3c
  • Fang, J., Nadeem, M., Habib, M., Akgül, A., Numerical investigation of nonlinear shock wave equations with fractional order in propagating disturbance, Symmetry, 14(6) (2022), 1179. https://doi.org/10.3390/sym14061179
  • Gencyigit, M., Senol, M., Koksal, M. E., Analytical solutions of the fractional (3+1)-dimensional Boiti-Leon-Manna- Pempinelli equation, CMDE, 11(3) (2023), 564-575. https://doi.org/10.22034/cmde.2023.54758.2278
  • Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104(16) (2000), 3914-3917. https://doi.org/10.1021/jp9936289
  • Iqbal, M., Alam, M. N., Lu, D., Seadawy, A. R., Alsubaie, N. E., Ibrahim, S., Applications of nonlinear longitudinal wave equation with periodic optical solitons wave structure in magneto electro elastic circular rod, Opt. Quantum Electron., 56(6) (2024), 1-22. 10.1007/s11082-024-06671-6
  • Iqbal, M., Nur Alam, M., Lu, D., Seadawy, A. R., Alsubaie, N. E., Ibrahim, S., On the exploration of dynamical optical solitons to the modify unstable nonlinear Schr¨odinger equation arising in optical fibers, Opt. Quantum Electron., 56(5) (2024), 765. https://doi.org/10.1007/s11082-024-06468-7
  • Isah, M. A., Yokus, A., Optical solitons of the complex Ginzburg-Landau equation having dual power nonlinear form using $φ^6$-model expansion approach, Math. Model. Numer. Simul. Appl., 3(3) (2023), 188-215. https://doi.org/10.53391/mmnsa.1337648
  • Islam, M. R., Application of Exp(ϕ(ξ))-expansion method for Tzitzeica type nonlinear evolution equations, J. Found. Appl. Phys., 4(1) (2016), 8-18.
  • Ismael, H. F., The (3+1)-dimensional Boussinesq equation: Novel multi-wave solutions, Results Phys., 53 (2023), 106965. https://doi.org/10.1016/j.rinp.2023.106965
  • Kadkhoda, N., Jafari, H., Analytical solutions of the Gerdjikov-Ivanov equation by using exp(−ϕ(ξ))-expansion method, Optik, 139 (2017), 72-76. https://doi.org/10.1016/j.ijleo.2017.03.078
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • Liu, J., Nadeem, M., Habib, M., Akgül, A., Approximate solution of nonlinear time-fractional Klein-Gordon equations using Yang transform, Symmetry, 14(5) (2022), 907. https://doi.org/10.3390/sym14050907
  • Luo, X., Nadeem, M., Inc, M., Dawood, S., Fractional complex transform and homotopy perturbation method for the approximate solution of Keller-Segel model, J. Funct. Spaces, 2022(1) (2022), 9637098. https://doi.org/10.1155/2022/9637098
  • Ma, Z., Chen, B., Bi, Q., Multiple rogue wave solutions for a modified (2+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 1-11 (2024). https://doi.org/10.1007/s11071-024-10076-1
  • Mirzazadeh, M., Akinyemi, L., Senol, M., Hosseini, K., A variety of solitons to the sixth-order dispersive (3+1)- dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities, Optik, 241 (2021), 166318. https://doi.org/10.1016/j.ijleo.2021.166318
  • Nisar, K. S., Akinyemi, L., Inc, M., S¸enol, M., Mirzazadeh, M., Houwe, A., Abbagari, S., Rezazadeh, H., New perturbed conformable Boussinesq-like equation: Soliton and other solutions, Results Phys., 33 (2022), 105200. https://doi.org/10.1016/j.rinp.2022.105200
  • Raslan, K. R., Ali, K. K., Shallal, M. A., The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations, Chaos Solit. Fractals, 103 (2017), 404-409. https://doi.org/10.1016/j.chaos.2017.06.029
  • Razzaq, W., Habib, M., Nadeem, M., Zafar, A., Khan, I., Mwanakatwea, P. K., Solitary wave solutions of conformable time fractional equations using modified simplest equation method, Complexity, 2022(1) (2022), 8705388. https://doi.org/10.1155/2022/8705388
  • Roshid, M. M., Alam, M. N., İlhan, O. A., Rahim, M. A., Tuhin, M. M. H., Rahman, M. M., Modulation instability and comparative observation of the effect of fractional parameters on new optical soliton solutions of the paraxial wave model, Opt. Quantum Electron., 56(6) (2024), 1010. https://doi.org/10.1007/s11082-024-06921-7
  • Senol, M., New analytical solutions of fractional symmetric regularized-long-wave equation, Revista Mexicana de Fisica, 66(3) (2020), 297-307. https://doi.org/10.31349/revmexfis.66.297
  • Senol, M., Analytical and approximate solutions of (2+1)-dimensional time-fractional Burgers Kadomtsev Petviashvili equation, Commun. Theor. Phys., 72(5) (2020), 055003. https://doi.org/10.1088/15729494/ab7707
  • Yel, G., On the new travelling wave solution of a neural communication model, Balikesir Univ. J. Sci. Eng., 21(2) (2019), 666-678. https://doi.org/10.25092/baunfbed.636782
  • Yel, G., Sulaiman, T. A., Baskonus, H. M., On the complex solutions to the (3+1)-dimensional conformable fractional modified KdV-Zakharov-Kuznetsov equation, Mod. Phys. Lett. B, 34(05) (2020), 2050069. https://doi.org/10.1142/S0217984920500694
  • Yel, G., Baskonus, H. M., Gao, W., New dark-bright soliton in the shallow water wave model, Aims Math., 5(4) (2020), 4027-4044. https://doi.org/10.3934/math.2020259
  • Yel, G., Aktürk, T., A new approach to (3+1) dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math. Nonlinear Sci., 5(1) (2020), 309-316. https://doi.org/10.2478/amns.2020.1.00029
  • Yel, G., Bulut, H., Ilhan, E., A new analytical method to the conformable chiral nonlinear Schr¨odinger equation in the quantum Hall effect, Pramana J. Phys., 96(1) (2022), 54. https://doi.org/10.1007/s12043-022-02292-4
  • Yokus, A., Construction of different types of traveling wave solutions of the relativistic wave equation associated with the Schr¨odinger equation, Math. Model. Numer. Simul. Appl., 1(1) (2021), 24-31. https://doi.org/10.1007/10.53391/mmnsa.2021.01.003
  • Zahran, E. H. M., Khater, M. M. A., Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40(3) (2016), 1769-1775. https://doi.org/10.1016/j.apm.2015.08.018
Year 2025, Volume: 74 Issue: 1, 1 - 16

Abstract

Project Number

HDP23F2

References

  • Akbar, M. A., Mohd Ali, N. H., Solitary wave solutions of the fourth order Boussinesq equation through the exp(−ϕ(η))-expansion method, SpringerPlus, 3(1) (2014), 1-6. https://doi.org/10.1186/2193-1801-3-344
  • Akinyemi, L., Veeresha, P., Şenol, M., Rezazadeh, H., An efficient technique for generalized conformable Pochhammer-Chree models of longitudinal wave propagation of elastic rod, Indian J. Phys., 96(14) (2022), 4209-4218. https://doi.org/10.1007/s12648-022-02324-0
  • Akinyemi, L., Shallow ocean soliton and localized waves in extended (2+1)-dimensional nonlinear evolution equations, Phys. Lett. A, 463 (2023), 128668. https://doi.org/10.1016/j.physleta.2023.128668
  • Alam, L. M. B., Jiang, X., Exact and explicit traveling wave solution to the time-fractional phi-four and (2+1)-dimensional CBS equations using the modified extended tanh-function method in mathematical physics, PDE Appl. Math., 4 (2021), 100039. https://doi.org/10.1016/j.padiff.2021.100039
  • Alam, M. N., Iqbal, M., Hassan, M., Fayz-Al-Asad, M., Hossain, M. S., Tunç, C., Bifurcation, phase plane analysis and exact soliton solutions in the nonlinear Schrodinger equation with Atangana’s conformable derivative, Chaos Solit. Fractals, 182 (2024), 114724. https://doi.org/10.1016/j.chaos.2024.114724
  • Alquran, M., Analytical solutions of fractional foam drainage equation by residual power series method, Math. Sci., 8(4) (2014), 153-160. https://doi.org/10.1007/s40096-015-0141-1
  • Alquran, M., Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method, J. Appl. Anal. Comput., 5(4) (2015), 589-599. https://doi.org/10.11948/2015046
  • Arqub, O. A., Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5(1) (2013), 31-52. 10.5373/jaram.1447.051912
  • Arqub, O. A., El-Ajou, A., Bataineh, A. S., Hashim, I., A representation of the exact solution of generalized Lane-Emden equations using a new analytical method, Abstr. Appl. Anal., 2013, 365725. https://doi.org/10.1155/2013/378593
  • Arqub, O. A., El-Ajou, A., Momani, S., Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, J. Comput. Phys., 293 (2015), 385-399. https://doi.org/10.1016/j.jcp.2014.09.034
  • Az-Zobi, E. A., Alzoubi, W. A., Akinyemi, L., Şenol, M., Masaedeh, B. S., A variety of wave amplitudes for the conformable fractional (2+1)-dimensional Ito equation, Mod. Phys. Lett. B, 35(15) (2021), 2150254. https://doi.org/10.1142/S0217984921502547
  • Cenesiz, Y., Kurt, A., New fractional complex transform for conformable fractional partial differential equations, J. Appl. Math., Statistics and Informatics, 12(2) (2016), 41-47. https://doi.org/10.1515/jamsi-2016-0007
  • Duran, S., Durur, H., Yavuz, M., Yokus, A., Discussion of numerical and analytical techniques for the emerging fractional order Murnaghan model in materials science, Opt. Quantum Electron., 55(6) (2023), 571. https://doi.org/10.1007/s11082-023-04838-1
  • Duran, S., Yokus, A., Kilinc, G., A study on solitary wave solutions for the Zoomeron equation supported by two dimensional dynamics, Phys. Scripta, 98(12) (2023), 125265. https://doi.org/10.1088/1402-4896/ad0c3c
  • Fang, J., Nadeem, M., Habib, M., Akgül, A., Numerical investigation of nonlinear shock wave equations with fractional order in propagating disturbance, Symmetry, 14(6) (2022), 1179. https://doi.org/10.3390/sym14061179
  • Gencyigit, M., Senol, M., Koksal, M. E., Analytical solutions of the fractional (3+1)-dimensional Boiti-Leon-Manna- Pempinelli equation, CMDE, 11(3) (2023), 564-575. https://doi.org/10.22034/cmde.2023.54758.2278
  • Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104(16) (2000), 3914-3917. https://doi.org/10.1021/jp9936289
  • Iqbal, M., Alam, M. N., Lu, D., Seadawy, A. R., Alsubaie, N. E., Ibrahim, S., Applications of nonlinear longitudinal wave equation with periodic optical solitons wave structure in magneto electro elastic circular rod, Opt. Quantum Electron., 56(6) (2024), 1-22. 10.1007/s11082-024-06671-6
  • Iqbal, M., Nur Alam, M., Lu, D., Seadawy, A. R., Alsubaie, N. E., Ibrahim, S., On the exploration of dynamical optical solitons to the modify unstable nonlinear Schr¨odinger equation arising in optical fibers, Opt. Quantum Electron., 56(5) (2024), 765. https://doi.org/10.1007/s11082-024-06468-7
  • Isah, M. A., Yokus, A., Optical solitons of the complex Ginzburg-Landau equation having dual power nonlinear form using $φ^6$-model expansion approach, Math. Model. Numer. Simul. Appl., 3(3) (2023), 188-215. https://doi.org/10.53391/mmnsa.1337648
  • Islam, M. R., Application of Exp(ϕ(ξ))-expansion method for Tzitzeica type nonlinear evolution equations, J. Found. Appl. Phys., 4(1) (2016), 8-18.
  • Ismael, H. F., The (3+1)-dimensional Boussinesq equation: Novel multi-wave solutions, Results Phys., 53 (2023), 106965. https://doi.org/10.1016/j.rinp.2023.106965
  • Kadkhoda, N., Jafari, H., Analytical solutions of the Gerdjikov-Ivanov equation by using exp(−ϕ(ξ))-expansion method, Optik, 139 (2017), 72-76. https://doi.org/10.1016/j.ijleo.2017.03.078
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • Liu, J., Nadeem, M., Habib, M., Akgül, A., Approximate solution of nonlinear time-fractional Klein-Gordon equations using Yang transform, Symmetry, 14(5) (2022), 907. https://doi.org/10.3390/sym14050907
  • Luo, X., Nadeem, M., Inc, M., Dawood, S., Fractional complex transform and homotopy perturbation method for the approximate solution of Keller-Segel model, J. Funct. Spaces, 2022(1) (2022), 9637098. https://doi.org/10.1155/2022/9637098
  • Ma, Z., Chen, B., Bi, Q., Multiple rogue wave solutions for a modified (2+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 1-11 (2024). https://doi.org/10.1007/s11071-024-10076-1
  • Mirzazadeh, M., Akinyemi, L., Senol, M., Hosseini, K., A variety of solitons to the sixth-order dispersive (3+1)- dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities, Optik, 241 (2021), 166318. https://doi.org/10.1016/j.ijleo.2021.166318
  • Nisar, K. S., Akinyemi, L., Inc, M., S¸enol, M., Mirzazadeh, M., Houwe, A., Abbagari, S., Rezazadeh, H., New perturbed conformable Boussinesq-like equation: Soliton and other solutions, Results Phys., 33 (2022), 105200. https://doi.org/10.1016/j.rinp.2022.105200
  • Raslan, K. R., Ali, K. K., Shallal, M. A., The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations, Chaos Solit. Fractals, 103 (2017), 404-409. https://doi.org/10.1016/j.chaos.2017.06.029
  • Razzaq, W., Habib, M., Nadeem, M., Zafar, A., Khan, I., Mwanakatwea, P. K., Solitary wave solutions of conformable time fractional equations using modified simplest equation method, Complexity, 2022(1) (2022), 8705388. https://doi.org/10.1155/2022/8705388
  • Roshid, M. M., Alam, M. N., İlhan, O. A., Rahim, M. A., Tuhin, M. M. H., Rahman, M. M., Modulation instability and comparative observation of the effect of fractional parameters on new optical soliton solutions of the paraxial wave model, Opt. Quantum Electron., 56(6) (2024), 1010. https://doi.org/10.1007/s11082-024-06921-7
  • Senol, M., New analytical solutions of fractional symmetric regularized-long-wave equation, Revista Mexicana de Fisica, 66(3) (2020), 297-307. https://doi.org/10.31349/revmexfis.66.297
  • Senol, M., Analytical and approximate solutions of (2+1)-dimensional time-fractional Burgers Kadomtsev Petviashvili equation, Commun. Theor. Phys., 72(5) (2020), 055003. https://doi.org/10.1088/15729494/ab7707
  • Yel, G., On the new travelling wave solution of a neural communication model, Balikesir Univ. J. Sci. Eng., 21(2) (2019), 666-678. https://doi.org/10.25092/baunfbed.636782
  • Yel, G., Sulaiman, T. A., Baskonus, H. M., On the complex solutions to the (3+1)-dimensional conformable fractional modified KdV-Zakharov-Kuznetsov equation, Mod. Phys. Lett. B, 34(05) (2020), 2050069. https://doi.org/10.1142/S0217984920500694
  • Yel, G., Baskonus, H. M., Gao, W., New dark-bright soliton in the shallow water wave model, Aims Math., 5(4) (2020), 4027-4044. https://doi.org/10.3934/math.2020259
  • Yel, G., Aktürk, T., A new approach to (3+1) dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math. Nonlinear Sci., 5(1) (2020), 309-316. https://doi.org/10.2478/amns.2020.1.00029
  • Yel, G., Bulut, H., Ilhan, E., A new analytical method to the conformable chiral nonlinear Schr¨odinger equation in the quantum Hall effect, Pramana J. Phys., 96(1) (2022), 54. https://doi.org/10.1007/s12043-022-02292-4
  • Yokus, A., Construction of different types of traveling wave solutions of the relativistic wave equation associated with the Schr¨odinger equation, Math. Model. Numer. Simul. Appl., 1(1) (2021), 24-31. https://doi.org/10.1007/10.53391/mmnsa.2021.01.003
  • Zahran, E. H. M., Khater, M. M. A., Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40(3) (2016), 1769-1775. https://doi.org/10.1016/j.apm.2015.08.018
There are 41 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Articles
Authors

Mehmet Şenol 0000-0001-8110-7739

Furkan Muzaffer Çelik 0000-0002-9274-1257

Project Number HDP23F2
Publication Date
Submission Date February 22, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2025 Volume: 74 Issue: 1

Cite

APA Şenol, M., & Çelik, F. M. (n.d.). Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable shallow water wave equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(1), 1-16.
AMA Şenol M, Çelik FM. Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable shallow water wave equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 74(1):1-16.
Chicago Şenol, Mehmet, and Furkan Muzaffer Çelik. “Analytical and Numerical Study on the Solutions of a New (2+1)-Dimensional Conformable Shallow Water Wave Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 1 n.d.: 1-16.
EndNote Şenol M, Çelik FM Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable shallow water wave equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 1 1–16.
IEEE M. Şenol and F. M. Çelik, “Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable shallow water wave equation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 1, pp. 1–16.
ISNAD Şenol, Mehmet - Çelik, Furkan Muzaffer. “Analytical and Numerical Study on the Solutions of a New (2+1)-Dimensional Conformable Shallow Water Wave Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/1 (n.d.), 1-16.
JAMA Şenol M, Çelik FM. Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable shallow water wave equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.;74:1–16.
MLA Şenol, Mehmet and Furkan Muzaffer Çelik. “Analytical and Numerical Study on the Solutions of a New (2+1)-Dimensional Conformable Shallow Water Wave Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 1, pp. 1-16.
Vancouver Şenol M, Çelik FM. Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable shallow water wave equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 74(1):1-16.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.