Year 2025,
Volume: 74 Issue: 2, 238 - 253, 19.06.2025
Muhammad Umar
,
Saad Ihsan Butt Dr.
,
Hüseyin Budak
References
-
Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson’s inequality and applications, J. Inequal. Appl., 5 (2000),
533-579.
-
Alomari, M., Darus, M., Dragomir, S. S., New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009), Article 9.
-
Kashuri, A., Mohammed, P. O., Abdeljawad, T., Hamasalh, F., Chu, Y. M., New Simpson type integral inequalities
for s-convex functions and their applications, Math. Probl. Eng., (2020), 1-12. https://doi.org/10.1155/2020/8871988.
-
Gao, S., Shi, W., On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74 (2012), 33-41.
-
Butt, S. I., Javed, I., Agarwal, P., Nieto, J. J., Newton-Simpson-type inequalities via majorization, J. Inequal. Appl.,
2023(1) (2023), 1–16. https://doi.org/10.1186/s13660-023-02918-0.
-
Iftikhar, S., Komam, P., Erden, S., Newton’s type integral inequalities via local fractional integrals, Fractals, 28(3)
(2020), 2050037. https://doi.org/10.1142/S0218348X20500371.
-
Noor, M. A., Noor, K. I., Iftikhar, S., Newton inequalities for $p$-harmonic convex functions, Honam Math. J., 40(2)
(2018), 239-250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239.
-
Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., Budak, H., Riemann-Liouville fractional Newton’s
type inequalities for differentiable convex functions, Fractal and Fractional, 6(3) (2022), Art. 175.
https://doi.org/10.3390/fractalfract6030175.
-
Luangboon, W., Nonlapon, K., Sarıkaya, M. Z., Budak, H., Newton-type inequalities associated with convex functions via quantum calculus, Miskolc mathematical Notes, In press.
-
Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y. M., New quantum boundaries for quantum
Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64.
https://doi.org/10.1186/s13662-021-03226-x.
-
Luangboon, W., Nonlaopon, K., Tariboon, J., Ntouyas, S. K., Simpson- and Newton-type inequalities for convex
functions via (p, q)-calculus, Mathematics, 9(12) (2021), 1338. https://doi.org/10.3390/math9121338.
-
Butt, S. I., Budak, H., Nonlaopon, K., New quantum Mercer estimates of Simpson-Newton like inequalities via convexity, Symmetry, 14(9) (2022), 1935. https://doi.org/10.3390/sym14091935.
-
Butt, S. I., Ain, Q. U., Budak, H., New quantum variants of Simpson-Newton type inequalities via $(\alpha, m)$-convexity, Korean Journal of Mathematics, 32(2) (2023), 161-180. https://doi.org/10.11568/kjm.2023.31.2.161
-
Ernst, T., A Comprehensive treatment of $q$-calculus, Springer: Basel, Switzerland, 2012.
-
Kac, V., Cheung, P., Quantum calculus, Springer, New York, 2002.
-
Jackson, F. H., On a $q$-definite integrals. Q. J. Pure Appl. Math., 41 (1910), 193-203.
-
Al-Salam, W., Some fractional $q$-integrals and $q$-derivatives, Proc. Edinb. Math. Soc., 15 (1966), 135-140.
-
Tariboon, J., Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282.
-
Tariboon, J., Ntouyas, S. K., Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121.
https://doi.org/10.1186/1029-242X-2014-121.
-
Alp, N., Sarikaya, M. Z., Kunt, M., Iscan, I., $q$-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University - Science, 30(2) (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007.
-
Bermudo, S., Kórus, P.,Valdés, J. N., On q-Hermite–Hadamard Inequalities for general convex functions, Acta Math. Hung., 160 (2020), 1-11. https://doi.org/10.1007/s10474-020-01025-6.
-
Vivas-Cortez, M., Kashuri, A., Liko, R., Hernandez, J. E., Quantum trapezium-type inequalities using generalized
$\phi$-convex functions, Axioms, 9(1) (2020), 12. https://doi.org/10.3390/axioms9010012
-
Ali, M. A., Budak, H., Abbas, M., Chu, Y. M., Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. https://doi.org/10.1186/s13662-020-03163-1.
-
Rashid, S., Butt, S. I., Kanwal, S., Ahmad, H.,Wang, M. K., Quantum integral inequalities with respect to Raina’s function via coordinated generalized-convex functions with applications, J. Funct. Spaces., 2021 (2021), Art ID: 6631474. https://doi.org/10.1155/2021/6631474.
-
Xu, P., Butt, S. I., Ain, Q. U., Budak, H., New estimates for Hermite-Hadamard inequality in quantum calculus via
$(\alpha, m)$-convexity, Symmetry, 14(7) (2022), 1394. https://doi.org/10.3390/sym14071394.
-
Saleh, W., Lakhdari, A., Abdeljawad, T., Meftah, B., On fractional biparameterized Newton-type inequalities, Journal of Inequalities and Applications, 2023(1) (2023), 122. https://doi.org/10.1186/s13660-023-03033-w
-
Li, H., Lakhdari, A., Jarad, F., Xu, H., Meftah, B., An expanded analysis of local fractional integral
inequalities via generalized $(s, P)$-convexity, Journal of Inequalities and Applications, 2024(1) (2024), 1-22.
https://doi.org/10.1186/s13660-024-03152-y
-
Xu, H., Lakhdari, A., Jarad, F., Abdeljawad, T., Meftah, B., On multiparametrized integral inequalities via
generalized $\alpha$-convexity on fractal set, Mathematical Methods in the Applied Sciences, 48(1) (2024), 980-1002. https://doi.org/10.1002/mma.10368.
-
Lakhdari, A., Bin-Mohsin, B., Jarad, F., Xu, H., Meftah, B., A parametrized approach to generalized fractional integral inequalities: Hermite-Hadamard and Maclaurin variants, Journal of King Saud University - Science, 36(11) (2024), 103523. https://doi.org/10.1016/j.jksus.2024.103523
-
Agarwal, P., Dragomir, S. S., Jleli, M., Samet, B., Advances in mathematical inequalities and applications, Springer Singapore, 2018.
-
Butt, S. I., Khan, D., Jain, S., Oros, G. I., Agarwal, P., Momani, S., Fractional integral inequalities
for superquadratic functions via Atangana-Baleanu’s operator with applications, Fractals, (2024).
https://doi.org/10.1142/S0218348X25400687.
-
Jain, S., Mehrez, K., Baleanu, D., Agarwal, P., Certain Hermite-Hadamard inequalities for logarithmically convex
functions with applications, Mathematics, 7(2) (2019), 163. https://doi.org/10.3390/math7020163.
-
Butt, S. I., Umar, M., Budak, H., New study on the quantum Midpoint-type Inequalities for twice q-differentiable
functions via the Jensen-Mercer inequality, Symmetry, 15(5) (2023), 1038. https://doi.org/10.3390/sym15051038.
-
Soontharanon, J., Ali, M. A., Budak, H., Nanlaopon, K., Abdullah, Z., Simpson’s and Newton’s type inequalities for
$(\alpha, m)$-convex functions via quantum calculus, Symmetry, 14(4) (2022), 736. https://doi.org/10.3390/sym14040736.
-
Saleh, W., Meftah, B., Lakhdari, A., Quantum dual Simpson type inequalities for $q$-differentiable
convex functions, International Journal of Nonlinear Analysis and Applications, 14(4) (2023), 63-76.
https://doi.org/10.22075/ijnaa.2023.29280.4109.
Parameterized Newton-type inequalities associated with convex functions via quantum calculus
Year 2025,
Volume: 74 Issue: 2, 238 - 253, 19.06.2025
Muhammad Umar
,
Saad Ihsan Butt Dr.
,
Hüseyin Budak
Abstract
Using the concept of quantum derivatives and integrals, we first develop a new parameterized identity in this work. This parameterized quantum identity is used to demonstrate parameterized quantum Newton-type inequalities related to convex functions. We also demonstrate how setting $\mathit{q} \to 1^{-}$ allows the newly generated inequalities to be recovered into some existing inequalities. In order to validate the recently discovered inequalities, we conclude by providing mathematical examples of convex functions along with some graphical analysis.
References
-
Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson’s inequality and applications, J. Inequal. Appl., 5 (2000),
533-579.
-
Alomari, M., Darus, M., Dragomir, S. S., New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009), Article 9.
-
Kashuri, A., Mohammed, P. O., Abdeljawad, T., Hamasalh, F., Chu, Y. M., New Simpson type integral inequalities
for s-convex functions and their applications, Math. Probl. Eng., (2020), 1-12. https://doi.org/10.1155/2020/8871988.
-
Gao, S., Shi, W., On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74 (2012), 33-41.
-
Butt, S. I., Javed, I., Agarwal, P., Nieto, J. J., Newton-Simpson-type inequalities via majorization, J. Inequal. Appl.,
2023(1) (2023), 1–16. https://doi.org/10.1186/s13660-023-02918-0.
-
Iftikhar, S., Komam, P., Erden, S., Newton’s type integral inequalities via local fractional integrals, Fractals, 28(3)
(2020), 2050037. https://doi.org/10.1142/S0218348X20500371.
-
Noor, M. A., Noor, K. I., Iftikhar, S., Newton inequalities for $p$-harmonic convex functions, Honam Math. J., 40(2)
(2018), 239-250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239.
-
Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., Budak, H., Riemann-Liouville fractional Newton’s
type inequalities for differentiable convex functions, Fractal and Fractional, 6(3) (2022), Art. 175.
https://doi.org/10.3390/fractalfract6030175.
-
Luangboon, W., Nonlapon, K., Sarıkaya, M. Z., Budak, H., Newton-type inequalities associated with convex functions via quantum calculus, Miskolc mathematical Notes, In press.
-
Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y. M., New quantum boundaries for quantum
Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64.
https://doi.org/10.1186/s13662-021-03226-x.
-
Luangboon, W., Nonlaopon, K., Tariboon, J., Ntouyas, S. K., Simpson- and Newton-type inequalities for convex
functions via (p, q)-calculus, Mathematics, 9(12) (2021), 1338. https://doi.org/10.3390/math9121338.
-
Butt, S. I., Budak, H., Nonlaopon, K., New quantum Mercer estimates of Simpson-Newton like inequalities via convexity, Symmetry, 14(9) (2022), 1935. https://doi.org/10.3390/sym14091935.
-
Butt, S. I., Ain, Q. U., Budak, H., New quantum variants of Simpson-Newton type inequalities via $(\alpha, m)$-convexity, Korean Journal of Mathematics, 32(2) (2023), 161-180. https://doi.org/10.11568/kjm.2023.31.2.161
-
Ernst, T., A Comprehensive treatment of $q$-calculus, Springer: Basel, Switzerland, 2012.
-
Kac, V., Cheung, P., Quantum calculus, Springer, New York, 2002.
-
Jackson, F. H., On a $q$-definite integrals. Q. J. Pure Appl. Math., 41 (1910), 193-203.
-
Al-Salam, W., Some fractional $q$-integrals and $q$-derivatives, Proc. Edinb. Math. Soc., 15 (1966), 135-140.
-
Tariboon, J., Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282.
-
Tariboon, J., Ntouyas, S. K., Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121.
https://doi.org/10.1186/1029-242X-2014-121.
-
Alp, N., Sarikaya, M. Z., Kunt, M., Iscan, I., $q$-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University - Science, 30(2) (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007.
-
Bermudo, S., Kórus, P.,Valdés, J. N., On q-Hermite–Hadamard Inequalities for general convex functions, Acta Math. Hung., 160 (2020), 1-11. https://doi.org/10.1007/s10474-020-01025-6.
-
Vivas-Cortez, M., Kashuri, A., Liko, R., Hernandez, J. E., Quantum trapezium-type inequalities using generalized
$\phi$-convex functions, Axioms, 9(1) (2020), 12. https://doi.org/10.3390/axioms9010012
-
Ali, M. A., Budak, H., Abbas, M., Chu, Y. M., Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. https://doi.org/10.1186/s13662-020-03163-1.
-
Rashid, S., Butt, S. I., Kanwal, S., Ahmad, H.,Wang, M. K., Quantum integral inequalities with respect to Raina’s function via coordinated generalized-convex functions with applications, J. Funct. Spaces., 2021 (2021), Art ID: 6631474. https://doi.org/10.1155/2021/6631474.
-
Xu, P., Butt, S. I., Ain, Q. U., Budak, H., New estimates for Hermite-Hadamard inequality in quantum calculus via
$(\alpha, m)$-convexity, Symmetry, 14(7) (2022), 1394. https://doi.org/10.3390/sym14071394.
-
Saleh, W., Lakhdari, A., Abdeljawad, T., Meftah, B., On fractional biparameterized Newton-type inequalities, Journal of Inequalities and Applications, 2023(1) (2023), 122. https://doi.org/10.1186/s13660-023-03033-w
-
Li, H., Lakhdari, A., Jarad, F., Xu, H., Meftah, B., An expanded analysis of local fractional integral
inequalities via generalized $(s, P)$-convexity, Journal of Inequalities and Applications, 2024(1) (2024), 1-22.
https://doi.org/10.1186/s13660-024-03152-y
-
Xu, H., Lakhdari, A., Jarad, F., Abdeljawad, T., Meftah, B., On multiparametrized integral inequalities via
generalized $\alpha$-convexity on fractal set, Mathematical Methods in the Applied Sciences, 48(1) (2024), 980-1002. https://doi.org/10.1002/mma.10368.
-
Lakhdari, A., Bin-Mohsin, B., Jarad, F., Xu, H., Meftah, B., A parametrized approach to generalized fractional integral inequalities: Hermite-Hadamard and Maclaurin variants, Journal of King Saud University - Science, 36(11) (2024), 103523. https://doi.org/10.1016/j.jksus.2024.103523
-
Agarwal, P., Dragomir, S. S., Jleli, M., Samet, B., Advances in mathematical inequalities and applications, Springer Singapore, 2018.
-
Butt, S. I., Khan, D., Jain, S., Oros, G. I., Agarwal, P., Momani, S., Fractional integral inequalities
for superquadratic functions via Atangana-Baleanu’s operator with applications, Fractals, (2024).
https://doi.org/10.1142/S0218348X25400687.
-
Jain, S., Mehrez, K., Baleanu, D., Agarwal, P., Certain Hermite-Hadamard inequalities for logarithmically convex
functions with applications, Mathematics, 7(2) (2019), 163. https://doi.org/10.3390/math7020163.
-
Butt, S. I., Umar, M., Budak, H., New study on the quantum Midpoint-type Inequalities for twice q-differentiable
functions via the Jensen-Mercer inequality, Symmetry, 15(5) (2023), 1038. https://doi.org/10.3390/sym15051038.
-
Soontharanon, J., Ali, M. A., Budak, H., Nanlaopon, K., Abdullah, Z., Simpson’s and Newton’s type inequalities for
$(\alpha, m)$-convex functions via quantum calculus, Symmetry, 14(4) (2022), 736. https://doi.org/10.3390/sym14040736.
-
Saleh, W., Meftah, B., Lakhdari, A., Quantum dual Simpson type inequalities for $q$-differentiable
convex functions, International Journal of Nonlinear Analysis and Applications, 14(4) (2023), 63-76.
https://doi.org/10.22075/ijnaa.2023.29280.4109.