Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 2, 238 - 253, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1434544

Abstract

References

  • Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson’s inequality and applications, J. Inequal. Appl., 5 (2000), 533-579.
  • Alomari, M., Darus, M., Dragomir, S. S., New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009), Article 9.
  • Kashuri, A., Mohammed, P. O., Abdeljawad, T., Hamasalh, F., Chu, Y. M., New Simpson type integral inequalities for s-convex functions and their applications, Math. Probl. Eng., (2020), 1-12. https://doi.org/10.1155/2020/8871988.
  • Gao, S., Shi, W., On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74 (2012), 33-41.
  • Butt, S. I., Javed, I., Agarwal, P., Nieto, J. J., Newton-Simpson-type inequalities via majorization, J. Inequal. Appl., 2023(1) (2023), 1–16. https://doi.org/10.1186/s13660-023-02918-0.
  • Iftikhar, S., Komam, P., Erden, S., Newton’s type integral inequalities via local fractional integrals, Fractals, 28(3) (2020), 2050037. https://doi.org/10.1142/S0218348X20500371.
  • Noor, M. A., Noor, K. I., Iftikhar, S., Newton inequalities for $p$-harmonic convex functions, Honam Math. J., 40(2) (2018), 239-250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239.
  • Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., Budak, H., Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal and Fractional, 6(3) (2022), Art. 175. https://doi.org/10.3390/fractalfract6030175.
  • Luangboon, W., Nonlapon, K., Sarıkaya, M. Z., Budak, H., Newton-type inequalities associated with convex functions via quantum calculus, Miskolc mathematical Notes, In press.
  • Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y. M., New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. https://doi.org/10.1186/s13662-021-03226-x.
  • Luangboon, W., Nonlaopon, K., Tariboon, J., Ntouyas, S. K., Simpson- and Newton-type inequalities for convex functions via (p, q)-calculus, Mathematics, 9(12) (2021), 1338. https://doi.org/10.3390/math9121338.
  • Butt, S. I., Budak, H., Nonlaopon, K., New quantum Mercer estimates of Simpson-Newton like inequalities via convexity, Symmetry, 14(9) (2022), 1935. https://doi.org/10.3390/sym14091935.
  • Butt, S. I., Ain, Q. U., Budak, H., New quantum variants of Simpson-Newton type inequalities via $(\alpha, m)$-convexity, Korean Journal of Mathematics, 32(2) (2023), 161-180. https://doi.org/10.11568/kjm.2023.31.2.161
  • Ernst, T., A Comprehensive treatment of $q$-calculus, Springer: Basel, Switzerland, 2012.
  • Kac, V., Cheung, P., Quantum calculus, Springer, New York, 2002.
  • Jackson, F. H., On a $q$-definite integrals. Q. J. Pure Appl. Math., 41 (1910), 193-203.
  • Al-Salam, W., Some fractional $q$-integrals and $q$-derivatives, Proc. Edinb. Math. Soc., 15 (1966), 135-140.
  • Tariboon, J., Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282.
  • Tariboon, J., Ntouyas, S. K., Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121.
  • Alp, N., Sarikaya, M. Z., Kunt, M., Iscan, I., $q$-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University - Science, 30(2) (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007.
  • Bermudo, S., Kórus, P.,Valdés, J. N., On q-Hermite–Hadamard Inequalities for general convex functions, Acta Math. Hung., 160 (2020), 1-11. https://doi.org/10.1007/s10474-020-01025-6.
  • Vivas-Cortez, M., Kashuri, A., Liko, R., Hernandez, J. E., Quantum trapezium-type inequalities using generalized $\phi$-convex functions, Axioms, 9(1) (2020), 12. https://doi.org/10.3390/axioms9010012
  • Ali, M. A., Budak, H., Abbas, M., Chu, Y. M., Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. https://doi.org/10.1186/s13662-020-03163-1.
  • Rashid, S., Butt, S. I., Kanwal, S., Ahmad, H.,Wang, M. K., Quantum integral inequalities with respect to Raina’s function via coordinated generalized-convex functions with applications, J. Funct. Spaces., 2021 (2021), Art ID: 6631474. https://doi.org/10.1155/2021/6631474.
  • Xu, P., Butt, S. I., Ain, Q. U., Budak, H., New estimates for Hermite-Hadamard inequality in quantum calculus via $(\alpha, m)$-convexity, Symmetry, 14(7) (2022), 1394. https://doi.org/10.3390/sym14071394.
  • Saleh, W., Lakhdari, A., Abdeljawad, T., Meftah, B., On fractional biparameterized Newton-type inequalities, Journal of Inequalities and Applications, 2023(1) (2023), 122. https://doi.org/10.1186/s13660-023-03033-w
  • Li, H., Lakhdari, A., Jarad, F., Xu, H., Meftah, B., An expanded analysis of local fractional integral inequalities via generalized $(s, P)$-convexity, Journal of Inequalities and Applications, 2024(1) (2024), 1-22. https://doi.org/10.1186/s13660-024-03152-y
  • Xu, H., Lakhdari, A., Jarad, F., Abdeljawad, T., Meftah, B., On multiparametrized integral inequalities via generalized $\alpha$-convexity on fractal set, Mathematical Methods in the Applied Sciences, 48(1) (2024), 980-1002. https://doi.org/10.1002/mma.10368.
  • Lakhdari, A., Bin-Mohsin, B., Jarad, F., Xu, H., Meftah, B., A parametrized approach to generalized fractional integral inequalities: Hermite-Hadamard and Maclaurin variants, Journal of King Saud University - Science, 36(11) (2024), 103523. https://doi.org/10.1016/j.jksus.2024.103523
  • Agarwal, P., Dragomir, S. S., Jleli, M., Samet, B., Advances in mathematical inequalities and applications, Springer Singapore, 2018.
  • Butt, S. I., Khan, D., Jain, S., Oros, G. I., Agarwal, P., Momani, S., Fractional integral inequalities for superquadratic functions via Atangana-Baleanu’s operator with applications, Fractals, (2024). https://doi.org/10.1142/S0218348X25400687.
  • Jain, S., Mehrez, K., Baleanu, D., Agarwal, P., Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7(2) (2019), 163. https://doi.org/10.3390/math7020163.
  • Butt, S. I., Umar, M., Budak, H., New study on the quantum Midpoint-type Inequalities for twice q-differentiable functions via the Jensen-Mercer inequality, Symmetry, 15(5) (2023), 1038. https://doi.org/10.3390/sym15051038.
  • Soontharanon, J., Ali, M. A., Budak, H., Nanlaopon, K., Abdullah, Z., Simpson’s and Newton’s type inequalities for $(\alpha, m)$-convex functions via quantum calculus, Symmetry, 14(4) (2022), 736. https://doi.org/10.3390/sym14040736.
  • Saleh, W., Meftah, B., Lakhdari, A., Quantum dual Simpson type inequalities for $q$-differentiable convex functions, International Journal of Nonlinear Analysis and Applications, 14(4) (2023), 63-76. https://doi.org/10.22075/ijnaa.2023.29280.4109.

Parameterized Newton-type inequalities associated with convex functions via quantum calculus

Year 2025, Volume: 74 Issue: 2, 238 - 253, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1434544

Abstract

Using the concept of quantum derivatives and integrals, we first develop a new parameterized identity in this work. This parameterized quantum identity is used to demonstrate parameterized quantum Newton-type inequalities related to convex functions. We also demonstrate how setting $\mathit{q} \to 1^{-}$ allows the newly generated inequalities to be recovered into some existing inequalities. In order to validate the recently discovered inequalities, we conclude by providing mathematical examples of convex functions along with some graphical analysis.

References

  • Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson’s inequality and applications, J. Inequal. Appl., 5 (2000), 533-579.
  • Alomari, M., Darus, M., Dragomir, S. S., New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009), Article 9.
  • Kashuri, A., Mohammed, P. O., Abdeljawad, T., Hamasalh, F., Chu, Y. M., New Simpson type integral inequalities for s-convex functions and their applications, Math. Probl. Eng., (2020), 1-12. https://doi.org/10.1155/2020/8871988.
  • Gao, S., Shi, W., On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74 (2012), 33-41.
  • Butt, S. I., Javed, I., Agarwal, P., Nieto, J. J., Newton-Simpson-type inequalities via majorization, J. Inequal. Appl., 2023(1) (2023), 1–16. https://doi.org/10.1186/s13660-023-02918-0.
  • Iftikhar, S., Komam, P., Erden, S., Newton’s type integral inequalities via local fractional integrals, Fractals, 28(3) (2020), 2050037. https://doi.org/10.1142/S0218348X20500371.
  • Noor, M. A., Noor, K. I., Iftikhar, S., Newton inequalities for $p$-harmonic convex functions, Honam Math. J., 40(2) (2018), 239-250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239.
  • Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., Budak, H., Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal and Fractional, 6(3) (2022), Art. 175. https://doi.org/10.3390/fractalfract6030175.
  • Luangboon, W., Nonlapon, K., Sarıkaya, M. Z., Budak, H., Newton-type inequalities associated with convex functions via quantum calculus, Miskolc mathematical Notes, In press.
  • Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y. M., New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. https://doi.org/10.1186/s13662-021-03226-x.
  • Luangboon, W., Nonlaopon, K., Tariboon, J., Ntouyas, S. K., Simpson- and Newton-type inequalities for convex functions via (p, q)-calculus, Mathematics, 9(12) (2021), 1338. https://doi.org/10.3390/math9121338.
  • Butt, S. I., Budak, H., Nonlaopon, K., New quantum Mercer estimates of Simpson-Newton like inequalities via convexity, Symmetry, 14(9) (2022), 1935. https://doi.org/10.3390/sym14091935.
  • Butt, S. I., Ain, Q. U., Budak, H., New quantum variants of Simpson-Newton type inequalities via $(\alpha, m)$-convexity, Korean Journal of Mathematics, 32(2) (2023), 161-180. https://doi.org/10.11568/kjm.2023.31.2.161
  • Ernst, T., A Comprehensive treatment of $q$-calculus, Springer: Basel, Switzerland, 2012.
  • Kac, V., Cheung, P., Quantum calculus, Springer, New York, 2002.
  • Jackson, F. H., On a $q$-definite integrals. Q. J. Pure Appl. Math., 41 (1910), 193-203.
  • Al-Salam, W., Some fractional $q$-integrals and $q$-derivatives, Proc. Edinb. Math. Soc., 15 (1966), 135-140.
  • Tariboon, J., Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282.
  • Tariboon, J., Ntouyas, S. K., Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121.
  • Alp, N., Sarikaya, M. Z., Kunt, M., Iscan, I., $q$-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University - Science, 30(2) (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007.
  • Bermudo, S., Kórus, P.,Valdés, J. N., On q-Hermite–Hadamard Inequalities for general convex functions, Acta Math. Hung., 160 (2020), 1-11. https://doi.org/10.1007/s10474-020-01025-6.
  • Vivas-Cortez, M., Kashuri, A., Liko, R., Hernandez, J. E., Quantum trapezium-type inequalities using generalized $\phi$-convex functions, Axioms, 9(1) (2020), 12. https://doi.org/10.3390/axioms9010012
  • Ali, M. A., Budak, H., Abbas, M., Chu, Y. M., Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. https://doi.org/10.1186/s13662-020-03163-1.
  • Rashid, S., Butt, S. I., Kanwal, S., Ahmad, H.,Wang, M. K., Quantum integral inequalities with respect to Raina’s function via coordinated generalized-convex functions with applications, J. Funct. Spaces., 2021 (2021), Art ID: 6631474. https://doi.org/10.1155/2021/6631474.
  • Xu, P., Butt, S. I., Ain, Q. U., Budak, H., New estimates for Hermite-Hadamard inequality in quantum calculus via $(\alpha, m)$-convexity, Symmetry, 14(7) (2022), 1394. https://doi.org/10.3390/sym14071394.
  • Saleh, W., Lakhdari, A., Abdeljawad, T., Meftah, B., On fractional biparameterized Newton-type inequalities, Journal of Inequalities and Applications, 2023(1) (2023), 122. https://doi.org/10.1186/s13660-023-03033-w
  • Li, H., Lakhdari, A., Jarad, F., Xu, H., Meftah, B., An expanded analysis of local fractional integral inequalities via generalized $(s, P)$-convexity, Journal of Inequalities and Applications, 2024(1) (2024), 1-22. https://doi.org/10.1186/s13660-024-03152-y
  • Xu, H., Lakhdari, A., Jarad, F., Abdeljawad, T., Meftah, B., On multiparametrized integral inequalities via generalized $\alpha$-convexity on fractal set, Mathematical Methods in the Applied Sciences, 48(1) (2024), 980-1002. https://doi.org/10.1002/mma.10368.
  • Lakhdari, A., Bin-Mohsin, B., Jarad, F., Xu, H., Meftah, B., A parametrized approach to generalized fractional integral inequalities: Hermite-Hadamard and Maclaurin variants, Journal of King Saud University - Science, 36(11) (2024), 103523. https://doi.org/10.1016/j.jksus.2024.103523
  • Agarwal, P., Dragomir, S. S., Jleli, M., Samet, B., Advances in mathematical inequalities and applications, Springer Singapore, 2018.
  • Butt, S. I., Khan, D., Jain, S., Oros, G. I., Agarwal, P., Momani, S., Fractional integral inequalities for superquadratic functions via Atangana-Baleanu’s operator with applications, Fractals, (2024). https://doi.org/10.1142/S0218348X25400687.
  • Jain, S., Mehrez, K., Baleanu, D., Agarwal, P., Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7(2) (2019), 163. https://doi.org/10.3390/math7020163.
  • Butt, S. I., Umar, M., Budak, H., New study on the quantum Midpoint-type Inequalities for twice q-differentiable functions via the Jensen-Mercer inequality, Symmetry, 15(5) (2023), 1038. https://doi.org/10.3390/sym15051038.
  • Soontharanon, J., Ali, M. A., Budak, H., Nanlaopon, K., Abdullah, Z., Simpson’s and Newton’s type inequalities for $(\alpha, m)$-convex functions via quantum calculus, Symmetry, 14(4) (2022), 736. https://doi.org/10.3390/sym14040736.
  • Saleh, W., Meftah, B., Lakhdari, A., Quantum dual Simpson type inequalities for $q$-differentiable convex functions, International Journal of Nonlinear Analysis and Applications, 14(4) (2023), 63-76. https://doi.org/10.22075/ijnaa.2023.29280.4109.
There are 35 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Muhammad Umar 0000-0001-9911-1111

Saad Ihsan Butt Dr. 0000-0001-7192-8269

Hüseyin Budak 0000-0001-8843-955X

Publication Date June 19, 2025
Submission Date February 10, 2024
Acceptance Date January 11, 2025
Published in Issue Year 2025 Volume: 74 Issue: 2

Cite

APA Umar, M., Dr., S. I. B., & Budak, H. (2025). Parameterized Newton-type inequalities associated with convex functions via quantum calculus. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(2), 238-253. https://doi.org/10.31801/cfsuasmas.1434544
AMA Umar M, Dr. SIB, Budak H. Parameterized Newton-type inequalities associated with convex functions via quantum calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2025;74(2):238-253. doi:10.31801/cfsuasmas.1434544
Chicago Umar, Muhammad, Saad Ihsan Butt Dr., and Hüseyin Budak. “Parameterized Newton-Type Inequalities Associated With Convex Functions via Quantum Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 2 (June 2025): 238-53. https://doi.org/10.31801/cfsuasmas.1434544.
EndNote Umar M, Dr. SIB, Budak H (June 1, 2025) Parameterized Newton-type inequalities associated with convex functions via quantum calculus. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 2 238–253.
IEEE M. Umar, S. I. B. Dr., and H. Budak, “Parameterized Newton-type inequalities associated with convex functions via quantum calculus”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 2, pp. 238–253, 2025, doi: 10.31801/cfsuasmas.1434544.
ISNAD Umar, Muhammad et al. “Parameterized Newton-Type Inequalities Associated With Convex Functions via Quantum Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/2 (June2025), 238-253. https://doi.org/10.31801/cfsuasmas.1434544.
JAMA Umar M, Dr. SIB, Budak H. Parameterized Newton-type inequalities associated with convex functions via quantum calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:238–253.
MLA Umar, Muhammad et al. “Parameterized Newton-Type Inequalities Associated With Convex Functions via Quantum Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 2, 2025, pp. 238-53, doi:10.31801/cfsuasmas.1434544.
Vancouver Umar M, Dr. SIB, Budak H. Parameterized Newton-type inequalities associated with convex functions via quantum calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(2):238-53.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.