Research Article
BibTex RIS Cite
Year 2025, Volume: 74 Issue: 2, 200 - 209, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1545937

Abstract

References

  • Ali, S., Fatima, T., Generic Riemannian submersions, Tamkang J. Math., 44(4) (2013), 395-409. https://doi.org/10.5556/j.tkjm.44.2013.1211.
  • Baird, P., Wood, J. C., Harmonic Morphism between Riemannian Manifolds, London Math. Soc. Monogr. New Series, 29, Oxford Univ. Press, Oxford, 2003. https://doi.org/10.1093/acprof:oso/9780198503620.001.0001.
  • Chinea, D., Almost contact metric submersions, Rend. Circ. Mat. Palermo., 34 (1985), 89-104. https://doi.org/10. 1007/BF02844887.
  • Falcitelli, M., Pastore, A. M., Ianus, S., Riemannian Submersions and Related Topics, World Scientific, 2004. https://doi.org/10.1142/5568.
  • Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-738.
  • Gündüzalp, Y., Semi-slant submersions from almost product Riemannian manifolds, Demonstratio, 49(3) (2016), 345-356. https://doi.org/10.1515/dema-2016-0029.
  • Gündüzalp, Y., Slant submersions from almost product Riemannian manifolds, Turk. J. Math., 37 (2013), 863-873. https://doi.org/10.3906/mat-1205-64.
  • Ianus, S., Ionescu, A. M., Mocanu, R., Vilcu, G. E., Riemannian submersions from Almost contact metric manifolds, Abh. Math. Semin. Univ. Humbg., 81 (2011), 101-114. https://doi.org/10.1007/s12188-011-0049-0.
  • Kumar S., Rai A. K., Prasad R., Pointwise slant submersions from Kenmotsu manifolds into Riemannian manifolds, Ital. J. Pure Appl. Math., 38 (2017), 561–572.
  • Kumar S., Prasad R., Pointwise slant submersions from Sasakian manifolds, J. Math. Comput. Sci., 8(3) (2018), 454-466. https://doi.org/10.28919/jmcs/3684.
  • Kumar, S., Prasad, R., Haseeb, A., Conformal semi-slant submersions from Sasakian manifolds, J. Anal , 31 (2023), 1855-1872. https://doi.org/10.1007/s41478-022-00540-9.
  • Kumar S., Prasad R. Verma S. K., Hemi-slant Riemannian submersions from cosymplectic manifolds, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15(4) (2022), 11-27. https://doi.org/10.32513/asetmj/19322008228.
  • Lee, J. W., Sahin, B., Pointwise slant submersions, Bull. Korean Math. Soc., 51 (2014), 1115-1126. http://dx.doi. org/10.4134/BKMS.2014.51.4.1115.
  • Noyan, E. B., Gündüzalp, Y., Proper bi-slant pseudo-Riemannian submersions whose total manifolds are in para-Kaehler manifolds, Honam Mathematical Journal, 44(3) (2022), 370-383. https://doi.org/10.5831/HMJ.2022.44.3.370.
  • Noyan, E. B., Gündüzalp, Y., Proper semi-slant pseudo-Riemannian submersions in para-Kaehler geometry, International Electronic Journal of Geometry, 15(2) (2022), 253-265. https://doi.org/10.36890/iejg.1033345.
  • Noyan, E. B., Gündüzalp, Y., Quasi hemi-slant pseudo-Riemannian submersions in para-complex geometry, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(4) (2023), 959-975. https://doi.org/10.31801/cfsuasmas.1089389.
  • O’Neill, B., The fundamental equations of a submersion, Mich. Math. J., 13(4) (1966), 458-469. https://doi.org/10. 1307/mmj/1028999604.
  • Park, K. S., Prasad, R., Semi-slant submersions, Bull. Korean Math. Soc., 50(3) (2013), 951-962. http://dx.doi.org/ http://doi.org/10.4134/BKMS.2012.49.2.329.
  • Prasad, R., Haseeb, A., Gupta, P., Quasi hemi-slant submanifolds of Kenmotsu manifolds, J. Appl. Math. & Informatics, 40(3-4) (2022), 475-490. https://doi.org/10.14317/jami.2022.475.
  • Prasad R., Singh P. K., Kumar S., On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds, Afrika Matematika, 32(3-4) (2021), 403-417. https://doi.org/10.1007/s13370-020-00833-x.
  • Prasad R., Singh P. K., Kumar S., Conformal semi-slant submersions from Lorentzian para Kenmotsu manifolds, Tbilisi Mathematical Journal, 14(1) (2021), 191-209. https://doi.org/10.32513/tmj/19322008115.
  • Sahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math., 8(3) (2010), 437-447. https://doi.org/10.2478/s11533-010-0023-6.
  • Sahin, B., Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56(1) (2013), 173-183. https://doi.org/10.4153/CMB-2011-144-8.
  • Sahin, B., Slant submersions from Almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roum., 54(102) (2011), 93-105.
  • Sahin, B., Riemannian submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Elsevier, Academic Press, London, 2017.
  • Sayar, C., Özdemir, F., Tastan, H. M., Pointwise semi-slant submersions whose total manifolds are locally product Riemannian manifolds, Int. J. Maps Math., 1(1) (2018), 91-115.
  • Sepet S. A., Bozok H. G., Pointwise semi-slant submersion, Differential Geometry-Dynamical Systems, 22 (2020), 1-10.
  • Sepet S. A., Ergüt M., Pointwise slant submersions from cosymplectic manifolds, Turkish Journal of Mathematics, 40(3) (2016), 582-93. https://doi.org/10.3906/mat-1503-98.
  • Tastan, H. M., Sahin, B., Yanan, S., Hemi-slant submersions, Mediterr. J. Math., 13(4) (2016), 2171-2184. http: //dx.doi.org/https://doi.org/10.1007/s00009-015-0602-7.
  • Watson, B., Almost Hermitian submersions, J. Differ. Geom., 11(1) (1976), 147-165. https://doi.org/10.4310/jdg/ 1214433303.
  • Yano, K., Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984. https://doi.org/10.1142/0067.

A note on pointwise quasi hemi-slant submersions

Year 2025, Volume: 74 Issue: 2, 200 - 209, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1545937

Abstract

As a generalization of hemi-slant and semi-slant submersions, we discuss pointwise quasi Hemi-slant (PQHS) submersions from almost Hermitian manifolds onto Riemannian manifolds. We obtain various results satisfied by these submersions from Kähler manifolds onto Riemannian manifolds. Moreover, we find necessary and sufficient conditions on integrability of the distributions, and explore the geometry of totally geodesic foliations of discussed submersions. At last, we construct some examples of a PQHS submersion from an almost Hermitian manifold onto a Riemannian manifold.

References

  • Ali, S., Fatima, T., Generic Riemannian submersions, Tamkang J. Math., 44(4) (2013), 395-409. https://doi.org/10.5556/j.tkjm.44.2013.1211.
  • Baird, P., Wood, J. C., Harmonic Morphism between Riemannian Manifolds, London Math. Soc. Monogr. New Series, 29, Oxford Univ. Press, Oxford, 2003. https://doi.org/10.1093/acprof:oso/9780198503620.001.0001.
  • Chinea, D., Almost contact metric submersions, Rend. Circ. Mat. Palermo., 34 (1985), 89-104. https://doi.org/10. 1007/BF02844887.
  • Falcitelli, M., Pastore, A. M., Ianus, S., Riemannian Submersions and Related Topics, World Scientific, 2004. https://doi.org/10.1142/5568.
  • Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-738.
  • Gündüzalp, Y., Semi-slant submersions from almost product Riemannian manifolds, Demonstratio, 49(3) (2016), 345-356. https://doi.org/10.1515/dema-2016-0029.
  • Gündüzalp, Y., Slant submersions from almost product Riemannian manifolds, Turk. J. Math., 37 (2013), 863-873. https://doi.org/10.3906/mat-1205-64.
  • Ianus, S., Ionescu, A. M., Mocanu, R., Vilcu, G. E., Riemannian submersions from Almost contact metric manifolds, Abh. Math. Semin. Univ. Humbg., 81 (2011), 101-114. https://doi.org/10.1007/s12188-011-0049-0.
  • Kumar S., Rai A. K., Prasad R., Pointwise slant submersions from Kenmotsu manifolds into Riemannian manifolds, Ital. J. Pure Appl. Math., 38 (2017), 561–572.
  • Kumar S., Prasad R., Pointwise slant submersions from Sasakian manifolds, J. Math. Comput. Sci., 8(3) (2018), 454-466. https://doi.org/10.28919/jmcs/3684.
  • Kumar, S., Prasad, R., Haseeb, A., Conformal semi-slant submersions from Sasakian manifolds, J. Anal , 31 (2023), 1855-1872. https://doi.org/10.1007/s41478-022-00540-9.
  • Kumar S., Prasad R. Verma S. K., Hemi-slant Riemannian submersions from cosymplectic manifolds, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15(4) (2022), 11-27. https://doi.org/10.32513/asetmj/19322008228.
  • Lee, J. W., Sahin, B., Pointwise slant submersions, Bull. Korean Math. Soc., 51 (2014), 1115-1126. http://dx.doi. org/10.4134/BKMS.2014.51.4.1115.
  • Noyan, E. B., Gündüzalp, Y., Proper bi-slant pseudo-Riemannian submersions whose total manifolds are in para-Kaehler manifolds, Honam Mathematical Journal, 44(3) (2022), 370-383. https://doi.org/10.5831/HMJ.2022.44.3.370.
  • Noyan, E. B., Gündüzalp, Y., Proper semi-slant pseudo-Riemannian submersions in para-Kaehler geometry, International Electronic Journal of Geometry, 15(2) (2022), 253-265. https://doi.org/10.36890/iejg.1033345.
  • Noyan, E. B., Gündüzalp, Y., Quasi hemi-slant pseudo-Riemannian submersions in para-complex geometry, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72(4) (2023), 959-975. https://doi.org/10.31801/cfsuasmas.1089389.
  • O’Neill, B., The fundamental equations of a submersion, Mich. Math. J., 13(4) (1966), 458-469. https://doi.org/10. 1307/mmj/1028999604.
  • Park, K. S., Prasad, R., Semi-slant submersions, Bull. Korean Math. Soc., 50(3) (2013), 951-962. http://dx.doi.org/ http://doi.org/10.4134/BKMS.2012.49.2.329.
  • Prasad, R., Haseeb, A., Gupta, P., Quasi hemi-slant submanifolds of Kenmotsu manifolds, J. Appl. Math. & Informatics, 40(3-4) (2022), 475-490. https://doi.org/10.14317/jami.2022.475.
  • Prasad R., Singh P. K., Kumar S., On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds, Afrika Matematika, 32(3-4) (2021), 403-417. https://doi.org/10.1007/s13370-020-00833-x.
  • Prasad R., Singh P. K., Kumar S., Conformal semi-slant submersions from Lorentzian para Kenmotsu manifolds, Tbilisi Mathematical Journal, 14(1) (2021), 191-209. https://doi.org/10.32513/tmj/19322008115.
  • Sahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math., 8(3) (2010), 437-447. https://doi.org/10.2478/s11533-010-0023-6.
  • Sahin, B., Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56(1) (2013), 173-183. https://doi.org/10.4153/CMB-2011-144-8.
  • Sahin, B., Slant submersions from Almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roum., 54(102) (2011), 93-105.
  • Sahin, B., Riemannian submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Elsevier, Academic Press, London, 2017.
  • Sayar, C., Özdemir, F., Tastan, H. M., Pointwise semi-slant submersions whose total manifolds are locally product Riemannian manifolds, Int. J. Maps Math., 1(1) (2018), 91-115.
  • Sepet S. A., Bozok H. G., Pointwise semi-slant submersion, Differential Geometry-Dynamical Systems, 22 (2020), 1-10.
  • Sepet S. A., Ergüt M., Pointwise slant submersions from cosymplectic manifolds, Turkish Journal of Mathematics, 40(3) (2016), 582-93. https://doi.org/10.3906/mat-1503-98.
  • Tastan, H. M., Sahin, B., Yanan, S., Hemi-slant submersions, Mediterr. J. Math., 13(4) (2016), 2171-2184. http: //dx.doi.org/https://doi.org/10.1007/s00009-015-0602-7.
  • Watson, B., Almost Hermitian submersions, J. Differ. Geom., 11(1) (1976), 147-165. https://doi.org/10.4310/jdg/ 1214433303.
  • Yano, K., Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984. https://doi.org/10.1142/0067.
There are 31 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Sushil Kumar 0000-0003-2118-4374

Rajendra Prasad 0000-0002-7502-0239

Abdul Haseeb 0000-0002-1175-6423

Punit Kumar Sıngh 0000-0002-8700-5976

Publication Date June 19, 2025
Submission Date September 9, 2024
Acceptance Date January 31, 2025
Published in Issue Year 2025 Volume: 74 Issue: 2

Cite

APA Kumar, S., Prasad, R., Haseeb, A., Sıngh, P. K. (2025). A note on pointwise quasi hemi-slant submersions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(2), 200-209. https://doi.org/10.31801/cfsuasmas.1545937
AMA Kumar S, Prasad R, Haseeb A, Sıngh PK. A note on pointwise quasi hemi-slant submersions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2025;74(2):200-209. doi:10.31801/cfsuasmas.1545937
Chicago Kumar, Sushil, Rajendra Prasad, Abdul Haseeb, and Punit Kumar Sıngh. “A Note on Pointwise Quasi Hemi-Slant Submersions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 2 (June 2025): 200-209. https://doi.org/10.31801/cfsuasmas.1545937.
EndNote Kumar S, Prasad R, Haseeb A, Sıngh PK (June 1, 2025) A note on pointwise quasi hemi-slant submersions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 2 200–209.
IEEE S. Kumar, R. Prasad, A. Haseeb, and P. K. Sıngh, “A note on pointwise quasi hemi-slant submersions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 2, pp. 200–209, 2025, doi: 10.31801/cfsuasmas.1545937.
ISNAD Kumar, Sushil et al. “A Note on Pointwise Quasi Hemi-Slant Submersions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/2 (June 2025), 200-209. https://doi.org/10.31801/cfsuasmas.1545937.
JAMA Kumar S, Prasad R, Haseeb A, Sıngh PK. A note on pointwise quasi hemi-slant submersions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:200–209.
MLA Kumar, Sushil et al. “A Note on Pointwise Quasi Hemi-Slant Submersions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 2, 2025, pp. 200-9, doi:10.31801/cfsuasmas.1545937.
Vancouver Kumar S, Prasad R, Haseeb A, Sıngh PK. A note on pointwise quasi hemi-slant submersions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(2):200-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.