Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 3, 460 - 477, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1514790

Abstract

References

  • Bala, R., Mishra, V., On the circulant matrices with Ducci sequence and Gaussian Fibonacci numbers, American Institute of Physics Conference Series, Vol 2352, No 1 (2021), 030012.
  • Bala, R., Mishra, V., Narayana matrix sequence, Proc. Jangjeon Math. Soc., 25(4) (2022), 427-434.
  • Bala, R., Mishra, V., Generalised $(k, t)$-Narayana sequence, J. Indones. Math. Soc., 30(1) (2024), 121-138.
  • Basu, M., Prasad, B., Coding theory on the m-extension of the Fibonacci p-numbers, Chaos Soliton Fract, 42(4) (2009), 2522-2530.
  • Bozkurt, D., Tam, T. Y., Determinants and inverses of r-circulant matrices associated with a number sequence, Linear Multilinear A, 63(10) (2015), 2079-2088.
  • Chandoul, A., On the norms of r-circulant matrices with generalized Fibonacci numbers, J. Algebra Comb. Discrete Struct. Appl., 4(1) (2017), 13-21.
  • Ciamberlini, C., Marengoni, A., On an interesting numerical curiosity, Mathematics Periodicals, 17(4) (1937), 25-30.
  • Davis, P. J., Circulant matrices, American Mathematical Society, A Wiley-Interscience Publication, 2013.
  • Flaut, C., Shpakivskyi, V., On generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions, Adv. Appl. Clifford Algebras, 23(3) (2013), 673-688.
  • Horn, R. A., Johnson, C.R., Matrix Analysis, Cambridge University Press, 2012.
  • Kuloglu, B., Eser, E., Ozkan, E., The r-circulant matrices associated with k-Fermat and k-Mersenne numbers, WSEAS Trans. Math., 22(1) (2023), 531-543.
  • Kuloglu, B., Engin, E., Ozkan, E., On the properties of r-circulant matrices involving generalized Fermat numbers, Sak. Univ. J. Sci, 27(5) (2023), 956-965.
  • Ozkan, E., Kuloglu, B., On the new Narayana polynomials, the Gauss Narayana numbers and their polynomials, Asian-Eur. J. Math., 14(6) (2020), 1-16.
  • Pacheenburawana, A., Sintunavarat, W., On the spectral norms of r-circulant matrices with the Padovan and Perrin sequences, J. Math. Anal., 9(3) (2018), 110-122.
  • Radicic, B., On k-circulant matrices with the Lucas numbers, Filomat, 32(11) (2018), 4037-4046.
  • Shen, S. Q., Cen, J. M., On the spectral norms of r-circulant matrices with the k-Fibonacci and k-Lucas numbers, Int. J. Contemp. Math. Sci., 5(12) (2010), 569-578.
  • Shen, S., Cen, J., On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 216(10) (2010), 2891-2897.
  • Shtayat, J., Al-Kateeb, A. A., The Perrin R-matrix and more properties with an application, J. Discrete Math. Sci. Cryptogr., 25(1) (2022), 41-52.
  • Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 160(1) (2005), 125-132.
  • Solak, S., Bahsi, M., Kan, O., On the circulant matrices with Ducci sequences and Fibonacci numbers, Filomat, 32(15) (2018), 5501-5508.
  • Solak, S., Bah¸si, M., Some properties of circulant matrices with Ducci sequences, Linear Algebra Appl., 542(01) (2018), 557-568.
  • Stakhov, A. P., Fibonacci matrices, a generalization of the “Cassini formula”, and a new coding theory, Chaos Solit. Fractals, 30(1) (2006), 56-66.
  • Tas, N., Ucar, S., Ozgur, N. Y., Kaymak, O. O., A new coding/decoding algorithm using Fibonacci numbers, Discrete Math. Algorithms Appl., 10(02) (2018), 1-12.
  • Ucar, S., Tas, N., Ozgur, N. Y., A new application to coding theory via Fibonacci and Lucas numbers, Math. Sci. Appl. E-Notes, 7(1) (2019), 62-70.

On the Frobenius norms of circulant matrices with Ducci sequences and Narayana and Gaussian Narayana numbers

Year 2025, Volume: 74 Issue: 3, 460 - 477, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1514790

Abstract

In the present paper, we obtain identities for Narayana numbers, like the sum of terms with even and odd subscripts, the sum of products of consecutive terms and the sum of squares of terms. Then, we find images $DN$ and $D^2N$ of $n$-tuple $N=(N_1, \ N_2,\ N_3, \ ... \ ,\ N_n)$ of Narayana numbers under a map $D:\mathbb{C} \rightarrow \mathbb{C}$ defined as $D(z_1, \ z_2, \ ... \ , \ z_n)=(\lvert z_2-z_1\rvert, \ \lvert z_3-z_2\rvert, \ ... \ ,\ \lvert z_n-z_{n-1}\rvert, \ \lvert z_n-z_1\rvert ).$ We are then determined the circulant, skew-circulant, and semi-circulant matrices of these images. We have been discovered Frobenius norms of these circulant matrices and relations among these norms. In addition, we find $DG$ and $D^2G$ by taking the $n$-tuple $G=(GN_1,\ GN_2, \ ... \ , \ GN_n)$ of Gaussian Narayana numbers. After that, we create circulant, semi-circulant, and skew-circulant matrices of $G, \ DG, \ D^2G$, determine their Frobenius norms, and derive relationships between them. Then, we obtain relations between norms of matrices of Narayana numbers and Gaussian Narayana numbers. Finally, coding and decoding methods with the use of circulant matrices of Narayana numbers and Gaussian Narayana numbers have been introduced.

References

  • Bala, R., Mishra, V., On the circulant matrices with Ducci sequence and Gaussian Fibonacci numbers, American Institute of Physics Conference Series, Vol 2352, No 1 (2021), 030012.
  • Bala, R., Mishra, V., Narayana matrix sequence, Proc. Jangjeon Math. Soc., 25(4) (2022), 427-434.
  • Bala, R., Mishra, V., Generalised $(k, t)$-Narayana sequence, J. Indones. Math. Soc., 30(1) (2024), 121-138.
  • Basu, M., Prasad, B., Coding theory on the m-extension of the Fibonacci p-numbers, Chaos Soliton Fract, 42(4) (2009), 2522-2530.
  • Bozkurt, D., Tam, T. Y., Determinants and inverses of r-circulant matrices associated with a number sequence, Linear Multilinear A, 63(10) (2015), 2079-2088.
  • Chandoul, A., On the norms of r-circulant matrices with generalized Fibonacci numbers, J. Algebra Comb. Discrete Struct. Appl., 4(1) (2017), 13-21.
  • Ciamberlini, C., Marengoni, A., On an interesting numerical curiosity, Mathematics Periodicals, 17(4) (1937), 25-30.
  • Davis, P. J., Circulant matrices, American Mathematical Society, A Wiley-Interscience Publication, 2013.
  • Flaut, C., Shpakivskyi, V., On generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions, Adv. Appl. Clifford Algebras, 23(3) (2013), 673-688.
  • Horn, R. A., Johnson, C.R., Matrix Analysis, Cambridge University Press, 2012.
  • Kuloglu, B., Eser, E., Ozkan, E., The r-circulant matrices associated with k-Fermat and k-Mersenne numbers, WSEAS Trans. Math., 22(1) (2023), 531-543.
  • Kuloglu, B., Engin, E., Ozkan, E., On the properties of r-circulant matrices involving generalized Fermat numbers, Sak. Univ. J. Sci, 27(5) (2023), 956-965.
  • Ozkan, E., Kuloglu, B., On the new Narayana polynomials, the Gauss Narayana numbers and their polynomials, Asian-Eur. J. Math., 14(6) (2020), 1-16.
  • Pacheenburawana, A., Sintunavarat, W., On the spectral norms of r-circulant matrices with the Padovan and Perrin sequences, J. Math. Anal., 9(3) (2018), 110-122.
  • Radicic, B., On k-circulant matrices with the Lucas numbers, Filomat, 32(11) (2018), 4037-4046.
  • Shen, S. Q., Cen, J. M., On the spectral norms of r-circulant matrices with the k-Fibonacci and k-Lucas numbers, Int. J. Contemp. Math. Sci., 5(12) (2010), 569-578.
  • Shen, S., Cen, J., On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 216(10) (2010), 2891-2897.
  • Shtayat, J., Al-Kateeb, A. A., The Perrin R-matrix and more properties with an application, J. Discrete Math. Sci. Cryptogr., 25(1) (2022), 41-52.
  • Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 160(1) (2005), 125-132.
  • Solak, S., Bahsi, M., Kan, O., On the circulant matrices with Ducci sequences and Fibonacci numbers, Filomat, 32(15) (2018), 5501-5508.
  • Solak, S., Bah¸si, M., Some properties of circulant matrices with Ducci sequences, Linear Algebra Appl., 542(01) (2018), 557-568.
  • Stakhov, A. P., Fibonacci matrices, a generalization of the “Cassini formula”, and a new coding theory, Chaos Solit. Fractals, 30(1) (2006), 56-66.
  • Tas, N., Ucar, S., Ozgur, N. Y., Kaymak, O. O., A new coding/decoding algorithm using Fibonacci numbers, Discrete Math. Algorithms Appl., 10(02) (2018), 1-12.
  • Ucar, S., Tas, N., Ozgur, N. Y., A new application to coding theory via Fibonacci and Lucas numbers, Math. Sci. Appl. E-Notes, 7(1) (2019), 62-70.
There are 24 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Roji Bala 0000-0002-2425-9004

Vinod Mishra 0000-0002-9979-8627

Publication Date September 23, 2025
Submission Date July 11, 2024
Acceptance Date May 5, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Bala, R., & Mishra, V. (2025). On the Frobenius norms of circulant matrices with Ducci sequences and Narayana and Gaussian Narayana numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 460-477. https://doi.org/10.31801/cfsuasmas.1514790
AMA Bala R, Mishra V. On the Frobenius norms of circulant matrices with Ducci sequences and Narayana and Gaussian Narayana numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):460-477. doi:10.31801/cfsuasmas.1514790
Chicago Bala, Roji, and Vinod Mishra. “On the Frobenius Norms of Circulant Matrices With Ducci Sequences and Narayana and Gaussian Narayana Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 460-77. https://doi.org/10.31801/cfsuasmas.1514790.
EndNote Bala R, Mishra V (September 1, 2025) On the Frobenius norms of circulant matrices with Ducci sequences and Narayana and Gaussian Narayana numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 460–477.
IEEE R. Bala and V. Mishra, “On the Frobenius norms of circulant matrices with Ducci sequences and Narayana and Gaussian Narayana numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 460–477, 2025, doi: 10.31801/cfsuasmas.1514790.
ISNAD Bala, Roji - Mishra, Vinod. “On the Frobenius Norms of Circulant Matrices With Ducci Sequences and Narayana and Gaussian Narayana Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 460-477. https://doi.org/10.31801/cfsuasmas.1514790.
JAMA Bala R, Mishra V. On the Frobenius norms of circulant matrices with Ducci sequences and Narayana and Gaussian Narayana numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:460–477.
MLA Bala, Roji and Vinod Mishra. “On the Frobenius Norms of Circulant Matrices With Ducci Sequences and Narayana and Gaussian Narayana Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 460-77, doi:10.31801/cfsuasmas.1514790.
Vancouver Bala R, Mishra V. On the Frobenius norms of circulant matrices with Ducci sequences and Narayana and Gaussian Narayana numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):460-77.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.