Research Article
BibTex RIS Cite

Point estimation of the process capability index $ S_{pmk}^{\prime} $ for the generalized KM exponential model with applications

Year 2025, Volume: 74 Issue: 3, 478 - 491, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1592434

Abstract

In this paper, we conduct statistical inferences on the process capability index $S_{pmk}^{\prime }$ for a lifetime distribution called the generalized KM exponential distribution. Some statistical properties of the distribution are reported, accompanied by figures that illustrate its shape characteristics based on the probability density function and the hazard rate function. The process capability index $S_{pmk}^{\prime }$ is used to evaluate processes that deviate from a non-normal distribution. The maximum likelihood estimate for $S_{pmk}^{\prime}$ is obtained using the invariance property of the maximum likelihood estimator. Furthermore, point estimates for $S_{pmk}^{^{\prime}}$ are derived based on least squares, weighted least squares, Anderson-Darling, and Cramér-von Mises estimators. Furthermore, two real data analyses are performed to assess the applicability of the $S_{pmk}^{^{\prime}}$ process capability index to the generalized KM exponential distribution.

References

  • Chen, J. P., Ding, C. G., A new process capability index for non-normal distributions, Int. J. Qual. Reliab. Manag., 18(7) (2001), 762-770.
  • Choi, B. C., Owen, D. B., A study of a new process capability index, Commun. Stat. Theory Methods, 19(4) (1990), 1231-1245.
  • Cordeiro, G. M., Ortega, E. M., Lemonte, A. J., The exponential–Weibull lifetime distribution, J. Statist. Comput. Simul., 84(12) (2014), 2592-2606.
  • Erfanian, M., Sadeghpour Gildeh, B., A new capability index for non-normal distributions based on linex loss function, Quality Engineering, 33(1) (2021), 76-84.
  • Juran, J. M., Godfrey, A. B., The Quality Control Process, McGraw-Hill, New York, 1999.
  • Kane, V. E., Process capability indices, J. Qual. Technology, 18(1) (1986), 41-52.
  • Kavya, P., Manoharan, M., A new lifetime model for non-monotone failure rate data, J. Indian Soc. Probab. Stat., 24(2) (2023), 211-241.
  • Kumar, S., Yadav, A. S., Dey, S., Saha, M., Parametric inference of generalized process capability index Cpyk for the power Lindley distribution, Qual. Technol. Quant. M., 19(2) (2022), 153-186.
  • Leiva, V., Marchant, C., Saulo, H., Aslam, M., Rojas, F., Capability indices for Birnbaum–Saunders processes applied to electronic and food industries, J. Appl. Stat., 41(9) (2014), 1881-1902.
  • Lu, W., Shi, D., A new compounding life distribution: the Weibull–Poisson distribution, J. Appl. Stat., 39(1) (2012), 21-38.
  • Maiti, S. S., Saha, M., Nanda, A. K., On generalizing process capability indices, Qual. Technol. Quant. M., 7(3) (2010), 279-300.
  • Pappas, V., Adamidis, K., Loukas, S., A family of lifetime distributions, J. Qual. Reliab. Eng., 2012 (2012), Article ID 760687.
  • Saha, M., Dey, S., Yadav, A. S., Kumar, S., Classical and Bayesian inference of Cpy for generalized Lindley distributed quality characteristic, Qual. Reliab. Eng. Int., 35(8) (2019), 2593-2611.
  • Taguchi, G., A tutorial on quality control and assurance–the Taguchi methods, ASA Annual Meeting, Las Vegas, 1985.
There are 14 citations in total.

Details

Primary Language English
Subjects Statistical Quality Control, Statistical Theory, Applied Statistics
Journal Section Research Articles
Authors

Kadir Karakaya 0000-0002-0781-3587

Şule Sağlam 0000-0002-1851-8217

Publication Date September 23, 2025
Submission Date November 27, 2024
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Karakaya, K., & Sağlam, Ş. (2025). Point estimation of the process capability index $ S_{pmk}^{\prime} $ for the generalized KM exponential model with applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 478-491. https://doi.org/10.31801/cfsuasmas.1592434
AMA Karakaya K, Sağlam Ş. Point estimation of the process capability index $ S_{pmk}^{\prime} $ for the generalized KM exponential model with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):478-491. doi:10.31801/cfsuasmas.1592434
Chicago Karakaya, Kadir, and Şule Sağlam. “Point Estimation of the Process Capability Index $ S_{pmk}^{\prime} $ for the Generalized KM Exponential Model With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 478-91. https://doi.org/10.31801/cfsuasmas.1592434.
EndNote Karakaya K, Sağlam Ş (September 1, 2025) Point estimation of the process capability index $ S_{pmk}^{\prime} $ for the generalized KM exponential model with applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 478–491.
IEEE K. Karakaya and Ş. Sağlam, “Point estimation of the process capability index $ S_{pmk}^{\prime} $ for the generalized KM exponential model with applications”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 478–491, 2025, doi: 10.31801/cfsuasmas.1592434.
ISNAD Karakaya, Kadir - Sağlam, Şule. “Point Estimation of the Process Capability Index $ S_{pmk}^{\prime} $ for the Generalized KM Exponential Model With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 478-491. https://doi.org/10.31801/cfsuasmas.1592434.
JAMA Karakaya K, Sağlam Ş. Point estimation of the process capability index $ S_{pmk}^{\prime} $ for the generalized KM exponential model with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:478–491.
MLA Karakaya, Kadir and Şule Sağlam. “Point Estimation of the Process Capability Index $ S_{pmk}^{\prime} $ for the Generalized KM Exponential Model With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 478-91, doi:10.31801/cfsuasmas.1592434.
Vancouver Karakaya K, Sağlam Ş. Point estimation of the process capability index $ S_{pmk}^{\prime} $ for the generalized KM exponential model with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):478-91.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.