The Unreasonable Effectiveness of the Chaotic Tent Map in Engineering Applications
Year 2022,
Volume: 4 Issue: 4, 197 - 204, 31.12.2022
Nithin Nagaraj
Abstract
From decimal expansion of real numbers to complex behaviour in physical, biological and human-made systems, deterministic chaos is ubiquitous. One of the simplest examples of a nonlinear dynamical system that exhibits chaos is the well known 1-dimensional piecewise linear Tent map. The Tent map (and their skewed cousins) are instances of a larger family of maps namely Generalized Luröth Series (GLS) which are studied for their rich number theoretic and ergodic properties. In this work, we discuss the unreasonable effectiveness of the Tent map and their generalizations (GLS maps) in a number of applications in electronics, communication and computer engineering. To list a few of these applications: (a) GLS-coding: a lossless data compression algorithm for i.i.d sources is Shannon optimal and is in fact a generalization of the popular Arithmetic Coding algorithm used in the image compression standard JPEG2000; (b) GLS maps are used as neurons in the recently proposed Neurochaos Learning architecture which delivers state-of-the-art performance in classification tasks; (c) GLS maps are ideal candidates for chaos-based computing since they can simulate XOR, NAND and other gates and for dense storage of information for efficient search and retrieval; (d) Noise-resistant versions of GLS maps are useful for signal multiplexing in the presence of noise and error detection; (e) GLS maps are shown to be useful in a number of cryptographic protocols - for joint compression and encryption and also for generating pseudo-random numbers. The unique properties and rich features of the Tent Map (GLS maps) that enable these wide variety of engineering applications will be investigated. A list of open problems are indicated as well.
Supporting Institution
This article was selected in EDIESCA 2022 for publication in Special Issue on CHTA.
Project Number
This article was selected in EDIESCA 2022 for publication in Special Issue on CHTA.
Thanks
This article was selected in EDIESCA 2022 for publication in Special Issue on CHTA.
References
- Addabbo, T., M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, 2006 The
digital tent map: Performance analysis and optimized design as
a low-complexity source of pseudorandom bits. IEEE Transactions
on Instrumentation and Measurement 55: 1451–1458.
- Ajai, R. A., H. N. Balakrishnan, and N. Nagaraj, Sep. 2022 Analysis
of logistic map based neurons in neuorchaos learning architectures
for data classification. Meeting for the Dissemination and
Research in the Study of Complex Systems and their Applications
(EDIESCA 2022) .
- Alligood, K. T., T. Sauer, and J. A. Yorke, 2000 Chaos: an introduction
to dynamical systems. Springer New York.
- Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements
for chaos-based cryptosystems. International journal of bifurcation
and chaos 16: 2129–2151.
- Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019
Chaosnet: A chaos based artificial neural network architecture
for classification. Chaos: An Interdisciplinary Journal of Nonlinear
Science 29: 113125.
- Banerjee, S., J. A. Yorke, and C. Grebogi, 1998 Robust chaos. Physical
Review Letters 80: 3049.
- Barrera, R. A. and G. G. Robert, 2022 Chaotic sets and hausdorff
dimension for lüroth expansions. Journal of Mathematical Analysis
and Applications p. 126324.
- Boyarski, A. and P. Gora, 1998 Laws of chaos. invariant measures
and dynamical systems in one dimension. APPLICATIONS OF
MATHEMATICS-PRAHA- 43: 480–480.
- Campos-Cantón, I., E. Campos-Cantón, J. Murguía, and H. Rosu,
2009 A simple electronic circuit realization of the tent map.
Chaos, Solitons & Fractals 42: 12–16.
- Campos-Cantón, I., L. M. Torres-Treviño, E. Campos-Cantón, and
R. Femat, 2013 Generation of a reconfigurable logical cell using
evolutionary computation. Discrete Dynamics in Nature and
Society 2013.
- Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers,
volume 29 of carus mathematical monographs. Mathematical
Association of America, Washington, DC p. 1.
- Devaney, R. L., 2018 An introduction to chaotic dynamical systems.
CRC press.
- Ditto, W. L., A. Miliotis, K. Murali, S. Sinha, and M. L. Spano, 2010
Chaogates: Morphing logic gates that exploit dynamical patterns.
Chaos: An Interdisciplinary Journal of Nonlinear Science
20: 037107.
- Glendinning, P., 2017 Robust chaos revisited. The European Physical
Journal Special Topics 226: 1721–1738.
- Harikrishnan, N., A. Kathpalia, and N. Nagaraj, 2022a Causeeffect
preservation and classification using neurochaos learning.
NeurIPS 2022 p. accepted.
- Harikrishnan, N. and N. Nagaraj, 2021 When noise meets chaos:
Stochastic resonance in neurochaos learning. Neural Networks
143: 425–435.
- Harikrishnan, N., S. Pranay, and N. Nagaraj, 2022b Classification
of sars-cov-2 viral genome sequences using neurochaos learning.
Medical & Biological Engineering & Computing pp. 1–11.
- Hasler, M. and T. Schimming, 2000 Chaos communication over
noisy channels. International Journal of Bifurcation and Chaos
10: 719–735.
- Hernandez, E. D. M., G. Lee, and N. H. Farhat, 2003 Analog realization
of arbitrary one-dimensional maps. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications
50: 1538–1547.
- Jaimes-Reátegui, R., S. Afanador-Delgado, R. Sevilla-Escoboza,
G. Huerta-Cuellar, J. H. García-López, et al., 2014 Optoelectronic
flexible logic gate based on a fiber laser. The European Physical
Journal Special Topics 223: 2837–2846.
- Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental
evidence and related models. Comptes rendus biologies
326: 787–840.
- Kumar, D., K. Nabi, P. K. Misra, and M. Goswami, 2018 Modified
tent map based design for true random number generator. In
2018 IEEE International Symposium on Smart Electronic Systems
(iSES)(Formerly iNiS), pp. 27–30, IEEE.
- Li, S., G. Chen, and X. Mou, 2005 On the dynamical degradation
of digital piecewise linear chaotic maps. International journal of
Bifurcation and Chaos 15: 3119–3151.
- Miliotis, A., S. Sinha, and W. L. Ditto, 2008 Exploiting nonlinear
dynamics to store and process information. International Journal
of Bifurcation and Chaos 18: 1551–1559.
- Murali, K., S. Sinha, and W. L. Ditto, 2005 Construction of a reconfigurable
dynamic logic cell. Pramana 64: 433–441.
- Nagaraj, N., 2008 Novel applications of chaos theory to coding and
cryptography. Ph.D. thesis, NIAS.
- Nagaraj, N., 2009 A dynamical systems proof of kraft–mcmillan
inequality and its converse for prefix-free codes. Chaos: An
Interdisciplinary Journal of Nonlinear Science 19: 013136.
- Nagaraj, N., 2011 Huffman coding as a nonlinear dynamical system.
International Journal of Bifurcation and Chaos 21: 1727–
1736.
- Nagaraj, N., 2012 One-time pad as a nonlinear dynamical system.
Communications in Nonlinear Science and Numerical Simulation
17: 4029–4036.
- Nagaraj, N., 2019 Using cantor sets for error detection. PeerJ Computer
Science 5: e171.
- Nagaraj, N., M. C. Shastry, and P. G. Vaidya, 2008 Increasing average
period lengths by switching of robust chaos maps in finite
precision. The European Physical Journal Special Topics 165:
73–83.
- Nagaraj, N. and P. G. Vaidya, 2009 Multiplexing of discrete chaotic
signals in presence of noise. Chaos: An Interdisciplinary Journal
of Nonlinear Science 19: 033102.
- Nagaraj, N., P. G. Vaidya, and K. G. Bhat, 2009 Arithmetic coding as
a non-linear dynamical system. Communications in Nonlinear
Science and Numerical Simulation 14: 1013–1020.
- Palacios-Luengas, L., J. Pichardo-Méndez, J. Díaz-Méndez,
F. Rodríguez-Santos, and R. Vázquez-Medina, 2019 Prng based
on skew tent map. Arabian Journal for Science and Engineering
44: 3817–3830.
- Rissanen, J. and G. G. Langdon, 1979 Arithmetic coding. IBM
Journal of research and development 23: 149–162.
- Sethi, D., N. Nagaraj, and H. N. Balakrishnan, 2022 Neurochaos
feature transformation for machine learning. in EDIESCA 2022 .
- Sinha, S. andW. L. Ditto, 1998 Dynamics based computation. physical
review Letters 81: 2156.
- Strogatz, S. H., 2018 Nonlinear dynamics and chaos: with applications
to physics, biology, chemistry, and engineering. CRC press.
- Valtierra, J. L., E. Tlelo-Cuautle, and Á. Rodríguez-Vázquez, 2017 A
switched-capacitor skew-tent map implementation for random
number generation. International Journal of Circuit Theory and
Applications 45: 305–315.
- Wong, K.-W., Q. Lin, and J. Chen, 2010 Simultaneous arithmetic
coding and encryption using chaotic maps. IEEE Transactions
on Circuits and Systems II: Express Briefs 57: 146–150.
Year 2022,
Volume: 4 Issue: 4, 197 - 204, 31.12.2022
Nithin Nagaraj
Project Number
This article was selected in EDIESCA 2022 for publication in Special Issue on CHTA.
References
- Addabbo, T., M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, 2006 The
digital tent map: Performance analysis and optimized design as
a low-complexity source of pseudorandom bits. IEEE Transactions
on Instrumentation and Measurement 55: 1451–1458.
- Ajai, R. A., H. N. Balakrishnan, and N. Nagaraj, Sep. 2022 Analysis
of logistic map based neurons in neuorchaos learning architectures
for data classification. Meeting for the Dissemination and
Research in the Study of Complex Systems and their Applications
(EDIESCA 2022) .
- Alligood, K. T., T. Sauer, and J. A. Yorke, 2000 Chaos: an introduction
to dynamical systems. Springer New York.
- Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements
for chaos-based cryptosystems. International journal of bifurcation
and chaos 16: 2129–2151.
- Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019
Chaosnet: A chaos based artificial neural network architecture
for classification. Chaos: An Interdisciplinary Journal of Nonlinear
Science 29: 113125.
- Banerjee, S., J. A. Yorke, and C. Grebogi, 1998 Robust chaos. Physical
Review Letters 80: 3049.
- Barrera, R. A. and G. G. Robert, 2022 Chaotic sets and hausdorff
dimension for lüroth expansions. Journal of Mathematical Analysis
and Applications p. 126324.
- Boyarski, A. and P. Gora, 1998 Laws of chaos. invariant measures
and dynamical systems in one dimension. APPLICATIONS OF
MATHEMATICS-PRAHA- 43: 480–480.
- Campos-Cantón, I., E. Campos-Cantón, J. Murguía, and H. Rosu,
2009 A simple electronic circuit realization of the tent map.
Chaos, Solitons & Fractals 42: 12–16.
- Campos-Cantón, I., L. M. Torres-Treviño, E. Campos-Cantón, and
R. Femat, 2013 Generation of a reconfigurable logical cell using
evolutionary computation. Discrete Dynamics in Nature and
Society 2013.
- Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers,
volume 29 of carus mathematical monographs. Mathematical
Association of America, Washington, DC p. 1.
- Devaney, R. L., 2018 An introduction to chaotic dynamical systems.
CRC press.
- Ditto, W. L., A. Miliotis, K. Murali, S. Sinha, and M. L. Spano, 2010
Chaogates: Morphing logic gates that exploit dynamical patterns.
Chaos: An Interdisciplinary Journal of Nonlinear Science
20: 037107.
- Glendinning, P., 2017 Robust chaos revisited. The European Physical
Journal Special Topics 226: 1721–1738.
- Harikrishnan, N., A. Kathpalia, and N. Nagaraj, 2022a Causeeffect
preservation and classification using neurochaos learning.
NeurIPS 2022 p. accepted.
- Harikrishnan, N. and N. Nagaraj, 2021 When noise meets chaos:
Stochastic resonance in neurochaos learning. Neural Networks
143: 425–435.
- Harikrishnan, N., S. Pranay, and N. Nagaraj, 2022b Classification
of sars-cov-2 viral genome sequences using neurochaos learning.
Medical & Biological Engineering & Computing pp. 1–11.
- Hasler, M. and T. Schimming, 2000 Chaos communication over
noisy channels. International Journal of Bifurcation and Chaos
10: 719–735.
- Hernandez, E. D. M., G. Lee, and N. H. Farhat, 2003 Analog realization
of arbitrary one-dimensional maps. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications
50: 1538–1547.
- Jaimes-Reátegui, R., S. Afanador-Delgado, R. Sevilla-Escoboza,
G. Huerta-Cuellar, J. H. García-López, et al., 2014 Optoelectronic
flexible logic gate based on a fiber laser. The European Physical
Journal Special Topics 223: 2837–2846.
- Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental
evidence and related models. Comptes rendus biologies
326: 787–840.
- Kumar, D., K. Nabi, P. K. Misra, and M. Goswami, 2018 Modified
tent map based design for true random number generator. In
2018 IEEE International Symposium on Smart Electronic Systems
(iSES)(Formerly iNiS), pp. 27–30, IEEE.
- Li, S., G. Chen, and X. Mou, 2005 On the dynamical degradation
of digital piecewise linear chaotic maps. International journal of
Bifurcation and Chaos 15: 3119–3151.
- Miliotis, A., S. Sinha, and W. L. Ditto, 2008 Exploiting nonlinear
dynamics to store and process information. International Journal
of Bifurcation and Chaos 18: 1551–1559.
- Murali, K., S. Sinha, and W. L. Ditto, 2005 Construction of a reconfigurable
dynamic logic cell. Pramana 64: 433–441.
- Nagaraj, N., 2008 Novel applications of chaos theory to coding and
cryptography. Ph.D. thesis, NIAS.
- Nagaraj, N., 2009 A dynamical systems proof of kraft–mcmillan
inequality and its converse for prefix-free codes. Chaos: An
Interdisciplinary Journal of Nonlinear Science 19: 013136.
- Nagaraj, N., 2011 Huffman coding as a nonlinear dynamical system.
International Journal of Bifurcation and Chaos 21: 1727–
1736.
- Nagaraj, N., 2012 One-time pad as a nonlinear dynamical system.
Communications in Nonlinear Science and Numerical Simulation
17: 4029–4036.
- Nagaraj, N., 2019 Using cantor sets for error detection. PeerJ Computer
Science 5: e171.
- Nagaraj, N., M. C. Shastry, and P. G. Vaidya, 2008 Increasing average
period lengths by switching of robust chaos maps in finite
precision. The European Physical Journal Special Topics 165:
73–83.
- Nagaraj, N. and P. G. Vaidya, 2009 Multiplexing of discrete chaotic
signals in presence of noise. Chaos: An Interdisciplinary Journal
of Nonlinear Science 19: 033102.
- Nagaraj, N., P. G. Vaidya, and K. G. Bhat, 2009 Arithmetic coding as
a non-linear dynamical system. Communications in Nonlinear
Science and Numerical Simulation 14: 1013–1020.
- Palacios-Luengas, L., J. Pichardo-Méndez, J. Díaz-Méndez,
F. Rodríguez-Santos, and R. Vázquez-Medina, 2019 Prng based
on skew tent map. Arabian Journal for Science and Engineering
44: 3817–3830.
- Rissanen, J. and G. G. Langdon, 1979 Arithmetic coding. IBM
Journal of research and development 23: 149–162.
- Sethi, D., N. Nagaraj, and H. N. Balakrishnan, 2022 Neurochaos
feature transformation for machine learning. in EDIESCA 2022 .
- Sinha, S. andW. L. Ditto, 1998 Dynamics based computation. physical
review Letters 81: 2156.
- Strogatz, S. H., 2018 Nonlinear dynamics and chaos: with applications
to physics, biology, chemistry, and engineering. CRC press.
- Valtierra, J. L., E. Tlelo-Cuautle, and Á. Rodríguez-Vázquez, 2017 A
switched-capacitor skew-tent map implementation for random
number generation. International Journal of Circuit Theory and
Applications 45: 305–315.
- Wong, K.-W., Q. Lin, and J. Chen, 2010 Simultaneous arithmetic
coding and encryption using chaotic maps. IEEE Transactions
on Circuits and Systems II: Express Briefs 57: 146–150.