The Wonder World of Complex Systems
Year 2022,
Volume: 4 Issue: 4, 267 - 273, 31.12.2022
J. L. Echenausía-monroy
,
J.r. Cuensta-garcía
J. Pena Ramirez
Abstract
Complex systems pervade nature and form the core of many technological applications. An exciting feature of these systems is that they exhibit a wide range of temporal behaviors, ranging from collective motion, synchronization, pattern formation, and chaos, among others. This has not only caught the attention of scientists, but also the interest of a wider audience. Consequently, our goal in this work is to provide a simple but descriptive explanation of some concepts related to complex systems. Specifically, the reader embarks on a journey that begins in the 17th century with the discovery of synchronization by Dutch scientist Christiaan Huygens and ends in the chaotic world explored by meteorologist Edward Lorenz around 1963. The journey is filled with examples, including synchronized clocks and metronomes, electronic fireflies that flash harmoniously, and even a chaotic dress.
Supporting Institution
CONACYT
Project Number
A1-S-26123
Thanks
This work was part of a museographic exhibition at "Caracol Museo de Ciencias" in Ensenada, Mexico. This work was supported by project "Análisis, control y sincronización de sistemas complejos con interconexiones dinámicas y acoplamientos flexibles" A1-S-26123, funded by CONACYT.
J.L.E.M. thanks CONACYT for financial support (CVU-706850, project: A1-S-26123). J.L.E.M. also thanks J.P.R. for the opportunity to complete a postdoctoral fellowship at CICESE.
References
- Abraham, N. B., A. M. Albano, A. Passamante, and P. E. Rapp, 2013
Measures of complexity and chaos, volume 208. Springer Science &
Business Media.
- Ambika, G., 2015 Ed lorenz: father of the ‘butterfly effect’. Resonance
20: 198–205.
- Arellano-Delgado, A., C. Cruz-Hernández, R. López Gutiérrez, and
C. Posadas-Castillo, 2015 Outer synchronization of simple firefly
discrete models in coupled networks. Mathematical Problems in
Engineering 2015.
- Atmospheres, C., 2022 Strange attractors: Visualisation
of chaotic equations. https://chaoticatmospheres.com/
mathrules-strange-attractors.
- Barrio, R., S. Ibáñez, and L. Pérez, 2017 Hindmarsh–rose model:
Close and far to the singular limit. Physics Letters A 381: 597–
603.
- Buck, J. and E. Buck, 1976 Synchronous fireflies. Scientific American
234: 74–85.
- Bulletin, U.-T.-I., 2019 Fashionable mathematics. https://issuu.com/
utokyo-iis/docs/utokyo-iis_bulletin_vol4/2?e=33831841/76398422.
Chenciner, A., 2015 Poincaré and the three-body problem. In Henri
Poincaré, 1912–2012, pp. 51–149, Springer.
- Cuesta-García, J. R., 2022 El maravilloso mundo de los sistemas
complejos: web site. https://complexity-net.org/.
- Devaney, R. L., 2018 An introduction to chaotic dynamical systems.
CRC press.
- Drazin, P. G. and P. D. Drazin, 1992 Nonlinear systems. Number 10,
Cambridge University Press.
- Echenausía-Monroy, J. L., 2022a The beauty of chaos. https://youtu.
be/Uou-FS_eHjM.
- Echenausía-Monroy, J. L., 2022b Chaos and the double pendulum.
https://youtu.be/SoNFulHypJQ.
- Echenausía-Monroy, J. L., 2022c Hanging platform to synchronize
metronomes. https://youtu.be/R-IcZJg1Qlo.
- Echenausía-Monroy, J. L., 2022d Improving the shaker with chaos.
https://youtu.be/hLdpnUWPdjM.
- Echenausía-Monroy, J. L., 2022e Logistics dress: Chaos in fashion.
https://youtu.be/GTsJ4Kg14TU.
- Echenausía-Monroy, J. L., 2022f Lorenz and the butterfly effect.
https://youtu.be/uYQvuNjVjBM.
- Echenausía-Monroy, J. L., 2022g Monumental clocks synchronized.
https://youtu.be/eQn3kzP8HU0.
- Echenausía-Monroy, J. L., 2022h Synchronized electronic fireflies.
https://youtu.be/yDTQx0rLvik.
- Echenausía-Monroy, J. L., 2022i Synchronized metronomes on ice
tea cans. https://youtu.be/Ng1bhcEaD-k.
- Echenausía-Monroy, J. L., 2022j The wonder world of complex
systems. https://youtu.be/eX3oShdvKFM.
- Echenausía-Monroy, J. L., J. H. García-López, R. Jaimes-Reátegui,
and G. Huerta-Cuéllar, 2020 Parametric control for multiscroll
generation: Electronic implementation and equilibrium analysis.
Nonlinear Analysis: Hybrid Systems 38: 100929.
- Fujisaka, H. and T. Yamada, 1983 Stability theory of synchronized
motion in coupled-oscillator systems. Progress of theoretical
physics 69: 32–47.
- Goldsztein, G. H., A. N. Nadeau, and S. H. Strogatz, 2021 Synchronization
of clocks and metronomes: A perturbation analysis
based on multiple timescales. Chaos: An Interdisciplinary Journal
of Nonlinear Science 31: 023109.
- Huerta-Cuéllar, G., E. Campos Cantón, and E. Tlelo-Cuautle, 2022
Complex Systems and Their Application (2022). (Eds.) Springer
Cham, Switzerland.
- Ladyman, J., J. Lambert, and K.Wiesner, 2013 What is a complex
system? European Journal for Philosophy of Science 3: 33–67.
- Larsen-Freeman, D. and L. Cameron, 2008 Complex systems and
applied linguistics. Oxford University Press Oxford.
- Lorenz, E., 2000 The butterfly effect. World Scientific Series on
Nonlinear Science Series A 39: 91–94.
- Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
Atmospheric Sciences 20: 130–141.
- Martens, E. A., S. Thutupalli, A. Fourriere, and O. Hallatschek, 2013
Chimera states in mechanical oscillator networks. Proceedings
of the National Academy of Sciences 110: 10563–10567.
- May, R. M., 2004 Simple mathematical models with very complicated
dynamics. In The Theory of Chaotic Attractors, pp. 85–93,
Springer.
- Núñez-Pérez, R. F., 2022 Prototipo de un nuevo mezclador electrónico
pseudocaótico. Ingeniería, investigación y tecnología
23.
- Osipov, G. V., J. Kurths, and C. Zhou, 2007 Synchronization in oscillatory
networks. Springer Science & Business Media.
- Ottino, J. M., 2003 Complex systems. American Institute of Chemical
Engineers. AIChE Journal 49: 292.
- Pena Ramirez, J. and H. Nijmeijer, 2020 The secret of the synchronized
pendulums. Physics World 33: 36.
- Pena Ramirez, J., L. A. Olvera, H. Nijmeijer, and J. Alvarez, 2016
The sympathy of two pendulum clocks: beyond huygens’ observations.
Scientific reports 6: 1–16.
- Pikovsky, A., J. Kurths, M. Rosenblum, and J. Kurths, 2003 Synchronization:
a universal concept in nonlinear sciences. Number 12,
Cambridge university press.
- Ramirez, J. and H. Nijmeijer, 2016 The poincaré method: A powerful
tool for analyzing synchronization of coupled oscillators.
Indagationes Mathematicae 27: 1127–1146.
- Shilnikov, A. and M. Kolomiets, 2008 Methods of the qualitative
theory for the hindmarsh–rose model: A case study–a tutorial.
International Journal of Bifurcation and Chaos 18: 2141–2168.
- Sprott, J. C., 2010 Elegant chaos: algebraically simple chaotic flows.
World Scientific.
- Strogatz, S., 2004 Sync: The emerging science of spontaneous order.
Penguin UK.
- Wang, X. and J. Lu, 2019 Collective behaviors through social interactions
in bird flocks. IEEE Circuits and Systems Magazine 19:
6–22.
- Wolff, R. C., 1992 Local lyapunov exponents: looking closely at
chaos. Journal of the Royal Statistical Society: Series B (Methodological)
54: 353–371.
Year 2022,
Volume: 4 Issue: 4, 267 - 273, 31.12.2022
J. L. Echenausía-monroy
,
J.r. Cuensta-garcía
J. Pena Ramirez
Project Number
A1-S-26123
References
- Abraham, N. B., A. M. Albano, A. Passamante, and P. E. Rapp, 2013
Measures of complexity and chaos, volume 208. Springer Science &
Business Media.
- Ambika, G., 2015 Ed lorenz: father of the ‘butterfly effect’. Resonance
20: 198–205.
- Arellano-Delgado, A., C. Cruz-Hernández, R. López Gutiérrez, and
C. Posadas-Castillo, 2015 Outer synchronization of simple firefly
discrete models in coupled networks. Mathematical Problems in
Engineering 2015.
- Atmospheres, C., 2022 Strange attractors: Visualisation
of chaotic equations. https://chaoticatmospheres.com/
mathrules-strange-attractors.
- Barrio, R., S. Ibáñez, and L. Pérez, 2017 Hindmarsh–rose model:
Close and far to the singular limit. Physics Letters A 381: 597–
603.
- Buck, J. and E. Buck, 1976 Synchronous fireflies. Scientific American
234: 74–85.
- Bulletin, U.-T.-I., 2019 Fashionable mathematics. https://issuu.com/
utokyo-iis/docs/utokyo-iis_bulletin_vol4/2?e=33831841/76398422.
Chenciner, A., 2015 Poincaré and the three-body problem. In Henri
Poincaré, 1912–2012, pp. 51–149, Springer.
- Cuesta-García, J. R., 2022 El maravilloso mundo de los sistemas
complejos: web site. https://complexity-net.org/.
- Devaney, R. L., 2018 An introduction to chaotic dynamical systems.
CRC press.
- Drazin, P. G. and P. D. Drazin, 1992 Nonlinear systems. Number 10,
Cambridge University Press.
- Echenausía-Monroy, J. L., 2022a The beauty of chaos. https://youtu.
be/Uou-FS_eHjM.
- Echenausía-Monroy, J. L., 2022b Chaos and the double pendulum.
https://youtu.be/SoNFulHypJQ.
- Echenausía-Monroy, J. L., 2022c Hanging platform to synchronize
metronomes. https://youtu.be/R-IcZJg1Qlo.
- Echenausía-Monroy, J. L., 2022d Improving the shaker with chaos.
https://youtu.be/hLdpnUWPdjM.
- Echenausía-Monroy, J. L., 2022e Logistics dress: Chaos in fashion.
https://youtu.be/GTsJ4Kg14TU.
- Echenausía-Monroy, J. L., 2022f Lorenz and the butterfly effect.
https://youtu.be/uYQvuNjVjBM.
- Echenausía-Monroy, J. L., 2022g Monumental clocks synchronized.
https://youtu.be/eQn3kzP8HU0.
- Echenausía-Monroy, J. L., 2022h Synchronized electronic fireflies.
https://youtu.be/yDTQx0rLvik.
- Echenausía-Monroy, J. L., 2022i Synchronized metronomes on ice
tea cans. https://youtu.be/Ng1bhcEaD-k.
- Echenausía-Monroy, J. L., 2022j The wonder world of complex
systems. https://youtu.be/eX3oShdvKFM.
- Echenausía-Monroy, J. L., J. H. García-López, R. Jaimes-Reátegui,
and G. Huerta-Cuéllar, 2020 Parametric control for multiscroll
generation: Electronic implementation and equilibrium analysis.
Nonlinear Analysis: Hybrid Systems 38: 100929.
- Fujisaka, H. and T. Yamada, 1983 Stability theory of synchronized
motion in coupled-oscillator systems. Progress of theoretical
physics 69: 32–47.
- Goldsztein, G. H., A. N. Nadeau, and S. H. Strogatz, 2021 Synchronization
of clocks and metronomes: A perturbation analysis
based on multiple timescales. Chaos: An Interdisciplinary Journal
of Nonlinear Science 31: 023109.
- Huerta-Cuéllar, G., E. Campos Cantón, and E. Tlelo-Cuautle, 2022
Complex Systems and Their Application (2022). (Eds.) Springer
Cham, Switzerland.
- Ladyman, J., J. Lambert, and K.Wiesner, 2013 What is a complex
system? European Journal for Philosophy of Science 3: 33–67.
- Larsen-Freeman, D. and L. Cameron, 2008 Complex systems and
applied linguistics. Oxford University Press Oxford.
- Lorenz, E., 2000 The butterfly effect. World Scientific Series on
Nonlinear Science Series A 39: 91–94.
- Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
Atmospheric Sciences 20: 130–141.
- Martens, E. A., S. Thutupalli, A. Fourriere, and O. Hallatschek, 2013
Chimera states in mechanical oscillator networks. Proceedings
of the National Academy of Sciences 110: 10563–10567.
- May, R. M., 2004 Simple mathematical models with very complicated
dynamics. In The Theory of Chaotic Attractors, pp. 85–93,
Springer.
- Núñez-Pérez, R. F., 2022 Prototipo de un nuevo mezclador electrónico
pseudocaótico. Ingeniería, investigación y tecnología
23.
- Osipov, G. V., J. Kurths, and C. Zhou, 2007 Synchronization in oscillatory
networks. Springer Science & Business Media.
- Ottino, J. M., 2003 Complex systems. American Institute of Chemical
Engineers. AIChE Journal 49: 292.
- Pena Ramirez, J. and H. Nijmeijer, 2020 The secret of the synchronized
pendulums. Physics World 33: 36.
- Pena Ramirez, J., L. A. Olvera, H. Nijmeijer, and J. Alvarez, 2016
The sympathy of two pendulum clocks: beyond huygens’ observations.
Scientific reports 6: 1–16.
- Pikovsky, A., J. Kurths, M. Rosenblum, and J. Kurths, 2003 Synchronization:
a universal concept in nonlinear sciences. Number 12,
Cambridge university press.
- Ramirez, J. and H. Nijmeijer, 2016 The poincaré method: A powerful
tool for analyzing synchronization of coupled oscillators.
Indagationes Mathematicae 27: 1127–1146.
- Shilnikov, A. and M. Kolomiets, 2008 Methods of the qualitative
theory for the hindmarsh–rose model: A case study–a tutorial.
International Journal of Bifurcation and Chaos 18: 2141–2168.
- Sprott, J. C., 2010 Elegant chaos: algebraically simple chaotic flows.
World Scientific.
- Strogatz, S., 2004 Sync: The emerging science of spontaneous order.
Penguin UK.
- Wang, X. and J. Lu, 2019 Collective behaviors through social interactions
in bird flocks. IEEE Circuits and Systems Magazine 19:
6–22.
- Wolff, R. C., 1992 Local lyapunov exponents: looking closely at
chaos. Journal of the Royal Statistical Society: Series B (Methodological)
54: 353–371.