Year 2022,
Volume: 4 Issue: 4, 234 - 240, 31.12.2022
Edgar Diaz-gonzalez
,
Arturo Guerra-lópez
,
Baltazar Aguirre Hernandez
,
Eric Campos
Project Number
A1-S-30433.
References
- Aguirre-Hernández, B., E. Campos-Cantón, J. A. López-Rentería,
and E. C. Díaz-González, 2015 A polynomial approach for generating
a monoparametric family of chaotic attractors via switched
linear systems. Chaos, Solitons and Fractals 71: 100–106.
- Anzo-Hernández, A., H. E. Gilardi-Velázquez, and E. Campos-
Cantón, 2018 On multistability behavior of unstable dissipative
systems. Chaos: An Interdisciplinary Journal of Nonlinear Science
28.
- Arecchi, F. T., R. Badii, and A. Politi, 1985 Generalized multistability
and noise-induced jumps in a nonlinear dynamical system.
Physical Review A 32.
- Attneave, F., 1971 Multistability in perception. Scientific American
225: 63–71.
- Campos-Cantón, E., G. Barajas-Ramírez, J. G.and Solís-Perales,
and R. Femat, 2010 Multiscroll attractors by switching systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science 20:
013116.
- Campos-Cantón, E., R. Femat, and G. Chen, 2012 Attractors generated
from switching unstable dissipative systems. Chaos: An
Interdisciplinary Journal of Nonlinear Science 22.
- Díaz-González, E. C., B. Aguirre-Herández, J. A. López-Rentería,
E. Campos-Cantón, and C. A. Loredo-Villalobos, 2017 Stability
and multiscroll attractors of control systems via the abscissa.
Mathematical Problems in Engineering 2017.
- Echenausía-Monroy, J., H. Gilardi-Velázquez, N.Wang, R. Jaimes-
Reátegui, J. García-López, et al., 2022 Multistability route in a
pwl multi-scroll system through fractional-order derivatives.
Chaos, Solitons and Fractals 161: 112355.
- Feudel, U., 2008 Complex dynamics in multistable systems. International
Journal of Bifurcation and Chaos 18: 1607–1626.
- Geist, K., U. Parlitz, and Lauterborn, 1990 Comparison of different
methods for computing lyapunov exponents. Progress of
Theoretical Physics 83: 875–893.
- Gilardi-Velázquez, H. E., J. L. Echenausia-Monroy, R. J. Escalante-
González, B. B. Cassal-Quiroga, and G. Huerta-Cuellar, 2022 On
the relationship between integer and fractional pwl systems with
multistable behavior. In Complex Systems and Their Applications,
edited by G. Huerta Cuéllar, E. Campos Cantón, and E. Tlelo-
Cuautle, pp. 113–129, Cham, Springer International Publishing.
- Gilardi-Velázquez, H. E., L. J. Ontañón García, D. G. Hurtado-
Rodriguez, and E. Campos-Cantón, 2017 Multistability in piecewise
linear systems versus eigenspectra variation and round
function. International Journal of Bifurcation and Chaos 27:
1730031.
- Hartman, P., 1964 Ordinary Differential Equations. Wiley, New York.
Lorenz, E. N., 1963 Deterministic non-periodic flow. J. Atmos. Sci.
20: 130–141.
- Lynch, S., 2004 Dynamical systems with applications using MATLAB.
Birkhäuser, Boston.
- Madan, R. N., 1993 Chua’s Circuit: A paradigm for Chaos. World
Scientific, Singapore.
- Pisarchik, A. N. and U. Feudel, 2014 Control of multistability.
Physics Reports 540: 167–218.
- Sparrow, C., 1982 The Lorenz Equation: Bifurcations, Chaos and
Strange Attractors. Springer-Verlag, New York.
- Uspensky, J. V., 1987 Teoría de ecuaciones. Limusa, México.
Generation of Multistability through Unstable Systems
Year 2022,
Volume: 4 Issue: 4, 234 - 240, 31.12.2022
Edgar Diaz-gonzalez
,
Arturo Guerra-lópez
,
Baltazar Aguirre Hernandez
,
Eric Campos
Abstract
In this work, we propose an approach to generate multistability based on a class of unstable systems that have all their roots in the right complex half-plane. Multistability is the coexistence of multiple stable states for a set of system parameters. The approach is realized by using linear third order differential equations that consists of two parameters. The first bifurcation parameter transforms the unstable system with all its roots in the right complex half-plane into an unstable system with one root in the left complex half-plane and two roots remaining in the right complex half-plane. With this first transformation, the system is capable of generating attractors by means of a piecewise linear function and the system presents monostability. We then use the another bifurcation parameter to switch from a monostable multiscroll attractor to several multistable states showing a single-scroll attractor.
Supporting Institution
CONACYT
Project Number
A1-S-30433.
Thanks
Díaz-González Edgar Cristian also wants to thank the support of CONACYT trough the postdoctoral fellowship and the IPICYT
by the support in the realization of this paper.
A. Guerra-López wants to thank to CONACYT for its Master’s degree scholarship.
E. Campos-Cantón acknowledges CONACYT for the financial support through Project no. A1-S-30433.
References
- Aguirre-Hernández, B., E. Campos-Cantón, J. A. López-Rentería,
and E. C. Díaz-González, 2015 A polynomial approach for generating
a monoparametric family of chaotic attractors via switched
linear systems. Chaos, Solitons and Fractals 71: 100–106.
- Anzo-Hernández, A., H. E. Gilardi-Velázquez, and E. Campos-
Cantón, 2018 On multistability behavior of unstable dissipative
systems. Chaos: An Interdisciplinary Journal of Nonlinear Science
28.
- Arecchi, F. T., R. Badii, and A. Politi, 1985 Generalized multistability
and noise-induced jumps in a nonlinear dynamical system.
Physical Review A 32.
- Attneave, F., 1971 Multistability in perception. Scientific American
225: 63–71.
- Campos-Cantón, E., G. Barajas-Ramírez, J. G.and Solís-Perales,
and R. Femat, 2010 Multiscroll attractors by switching systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science 20:
013116.
- Campos-Cantón, E., R. Femat, and G. Chen, 2012 Attractors generated
from switching unstable dissipative systems. Chaos: An
Interdisciplinary Journal of Nonlinear Science 22.
- Díaz-González, E. C., B. Aguirre-Herández, J. A. López-Rentería,
E. Campos-Cantón, and C. A. Loredo-Villalobos, 2017 Stability
and multiscroll attractors of control systems via the abscissa.
Mathematical Problems in Engineering 2017.
- Echenausía-Monroy, J., H. Gilardi-Velázquez, N.Wang, R. Jaimes-
Reátegui, J. García-López, et al., 2022 Multistability route in a
pwl multi-scroll system through fractional-order derivatives.
Chaos, Solitons and Fractals 161: 112355.
- Feudel, U., 2008 Complex dynamics in multistable systems. International
Journal of Bifurcation and Chaos 18: 1607–1626.
- Geist, K., U. Parlitz, and Lauterborn, 1990 Comparison of different
methods for computing lyapunov exponents. Progress of
Theoretical Physics 83: 875–893.
- Gilardi-Velázquez, H. E., J. L. Echenausia-Monroy, R. J. Escalante-
González, B. B. Cassal-Quiroga, and G. Huerta-Cuellar, 2022 On
the relationship between integer and fractional pwl systems with
multistable behavior. In Complex Systems and Their Applications,
edited by G. Huerta Cuéllar, E. Campos Cantón, and E. Tlelo-
Cuautle, pp. 113–129, Cham, Springer International Publishing.
- Gilardi-Velázquez, H. E., L. J. Ontañón García, D. G. Hurtado-
Rodriguez, and E. Campos-Cantón, 2017 Multistability in piecewise
linear systems versus eigenspectra variation and round
function. International Journal of Bifurcation and Chaos 27:
1730031.
- Hartman, P., 1964 Ordinary Differential Equations. Wiley, New York.
Lorenz, E. N., 1963 Deterministic non-periodic flow. J. Atmos. Sci.
20: 130–141.
- Lynch, S., 2004 Dynamical systems with applications using MATLAB.
Birkhäuser, Boston.
- Madan, R. N., 1993 Chua’s Circuit: A paradigm for Chaos. World
Scientific, Singapore.
- Pisarchik, A. N. and U. Feudel, 2014 Control of multistability.
Physics Reports 540: 167–218.
- Sparrow, C., 1982 The Lorenz Equation: Bifurcations, Chaos and
Strange Attractors. Springer-Verlag, New York.
- Uspensky, J. V., 1987 Teoría de ecuaciones. Limusa, México.