Research Article
BibTex RIS Cite

Effects of Optical Laser Injection in Multistable Erbium Fiber Lasers

Year 2022, Volume: 4 Issue: 4, 226 - 233, 31.12.2022
https://doi.org/10.51537/chaos.1197559

Abstract

During the past years, the study of optical injection has been intensely carried in theoretical and experimental realizations, showing interesting emergent behaviors, and synchronized states between other results. This work proposes an experimental scheme of an array of three driven erbium-doped fiber lasers (EDFLs), which dynamics exhibit the coexistence of multiple attractors. The laser array is controlled by a driver EDFL by injecting its optical intensity into the three coupled driven EDFLs array. The experimental realization was with the aim to induce an attractor tracking in the driving lasers, then to get coexisting states with increasing output power, and to study other emergent behavior given by the differences between doped fibers. To find the multistability regions, some bifurcation diagrams of the laser peak intensities are constructed. The obtained results are identified by comparing them with the modulation frequency. In some cases, the obtained results show that the intensity of the optical output signal of the driven systems is increased with respect to the initial individual response. In the case of synchronized states, it’s possible to get an increased signal from the whole system. The obtained results could have important applications in repeaters of communications systems.

Supporting Institution

CONACYT

Project Number

320597

Thanks

J.O.E. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) for the support provided to develop the studies of Doctorate in Science and Technology at CULagos in UdeG. R.J.-R. thanks CONACYT for financial support, project No. 320597. To AMVP, and VPS for their support with the final edition of the paper.

References

  • Barba-Franco, J., L. Romo-Muñoz, R. Jaimes-Reategui, J. García- López, G. Huerta-Cuellar, et al., 2022 Electronic equivalent of a pump-modulated erbium-doped fiber laser. Integration p. In press.
  • Bouzid, B., 2011 New erbium doped fiber laser amplifier. In 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), pp. 1–3, IEEE.
  • Cai, X., P. Gu, and Z. Zhang, 2022 Real-time observation of mode locking and q-switching in erbium-doped fiber laser using plasmonic titanium nitride nanoparticles. Journal of Russian Laser Research 43: 169–175.
  • Castillo-Guzmán, A., G. Anzueto-Sánchez, R. Selvas-Aguilar, J. Estudillo-Ayala, R. Rojas-Laguna, et al., 2008 Erbium-doped tunable fiber laser. In Laser Beam Shaping IX, volume 7062, pp. 214–217, SPIE.
  • Digonnet, M., 2001 Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded. CRC, second edition.
  • Doumbia, Y., T. Malica, D.Wolfersberger, K. Panajotov, and M. Sciamanna, 2020 Nonlinear dynamics of a laser diode with an injection of an optical frequency comb. Opt. Express 28: 30379–30390.
  • Doumbia, Y., D.Wolfersberger, K. Panajotov, and M. Sciamanna, 2022 Two polarization comb dynamics in vcsels subject to optical injection. In Photonics, volume 9, p. 115, MDPI.
  • Droste, S., G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, 2016 Optical frequency comb generation based on erbium fiber lasers. Nanophotonics 5: 196–213.
  • Duarte, F., 2009 Tunable Laser Applications. CRC, second edition. Esqueda-de-la Torre, J., J. García-López, G. Huerta-Cuellar, and R. Jaimes-Reategui, 2022 Synchronization of two fiber lasers with optical logarithmic coupler: Experimental implementation. In Complex Systems and Their Applications, pp. 3–21, Springer.
  • Huang, Y., P. Zhou, Y. Zeng, R. Zhang, and N. Li, 2022 Evolution of extreme events in a semiconductor laser subject to chaotic optical injection. Physical Review A 105: 043521.
  • Huerta-Cuellar, G., A. Pisarchik, A. Kir’yanov, Y. O. Barmenkov, and J. del Valle Hernández, 2009 Prebifurcation noise amplification in a fiber laser. Physical Review E 79: 036204.
  • Huerta-Cuellar, G., A. N. Pisarchik, and Y. O. Barmenkov, 2008 Experimental characterization of hopping dynamics in a multistable fiber laser. Physical Review E 78: 035202.
  • Jafry, A., N. Kasim, M. Rusdi, A. Rosol, R. Yusoff, et al., 2020 Max phase based saturable absorber for mode-locked erbium-doped fiber laser. Optics & Laser Technology 127: 106186.
  • Keren, S. and M. Horowitz, 2001 Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses. Optics Letters 26: 328–330.
  • Kir’yanov, A. V., Y. O. Barmenkov, G. E. Sandoval-Romero, and L. Escalante-Zarate, 2013 er3+ concentration effects in commercial erbium-doped silica fibers fabricated through the mcvd and dnd technologies. IEEE Journal of Quantum Electronics 49: 511– 521.
  • Kraus, M., M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, et al., 2010 Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Optics express 18: 22305– 22313.
  • Lim, H., Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, et al., 2005 Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Optics letters 30: 1171–1173.
  • Liu, J., X. Li, J. Feng, C. Zheng, Y.Wang, et al., 2020 Zns nanospheres for optical modulator in an erbium-doped fiber laser. Annalen der Physik 532: 1900454.
  • Luo, L. and P. Chu, 1998 Optical secure communications with chaotic erbium-doped fiber lasers. J. Opt. Soc. Amer. B 15: 2524–2530.
  • Magallón, D. A., R. Jaimes-Reátegui, J. H. García-López, G. Huerta- Cuellar, D. López-Mancilla, et al., 2022 Control of multistability in an erbium-doped fiber laser by an artificial neural network: A numerical approach. Mathematics 10: 3140.
  • Morin, F., F. Druon, M. Hanna, and P. Georges, 2009 Microjoule femtosecond fiber laser at 1.6 μm for corneal surgery applications. Optics letters 34: 1991–1993.
  • Philippov, V., C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, et al., 2004 High-energy in-fiber pulse amplification for coherent lidar applications. Optics letters 29: 2590–2592.
  • Pisarchik, A. and R. Jaimes-Reategui, 2009 Control of basins of attraction in a multistable fiber laser. Physics Letters A 374: 228– 234.
  • Pisarchik, A., R. Jaimes-Reátegui, R. Sevilla-Escoboza, and G. Huerta-Cuellar, 2012 Multistate intermittency and extreme pulses in a fiber laser. Physical Review E 86: 056219.
  • Pisarchik, A., R. Sevilla-Escoboza, R. Jaimes-Reátegui, G. Huerta- Cuellar, J. García-Lopez, et al., 2013 Experimental implementation of a biometric laser synaptic sensor. Sensors pp. 17322– 17331.
  • Pisarchik, A. N. and A. E. Hramov, 2022 Multistability in lasers. In Multistability in Physical and Living Systems, pp. 167–198, Springer.
  • Pisarchik, A. N., R. Jaimes-Reátegui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, 2011 Rogue waves in a multistable system. Physical Review Letters 107: 274101.
  • Pisarchik, A. N., A. V. Kir’yanov, Y. O. Barmenkov, and R. Jaimes- Reátegui, 2005 Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment. JOSA B 22: 2107– 2114.
  • R. Mary, D. C. and A. Kar, 2014 Eapplications of fiber lasers for the development of compact photonic devices. IEEE J. Sel. Top. Quantum Electron 20: 0902513.
  • Reategui, R., A. Kir’yanov, A. Pisarchik, Y. O. Barmenkov, and N. Il’ichev, 2004 Experimental study and modeling of coexisting attractors and bifurcations in an erbium-doped fiber laser with diode-pump modulation. Laser Phys 14: 1277–1281.
  • Sevilla-Escoboza, R., G. Huerta-Cuéllar, R. Jaimes-Reátegui, J. García-López, C. Medel-Ruiz, et al., 2017 Error-feedback control of multistability. Journal of the Franklin Institute 354: 7346– 7358.
  • Sobo´ n, G., 2022 Noise-like pulses in mode-locked fiber lasers. In Dissipative Optical Solitons, pp. 319–337, Springer.
  • Tseng, C.-H., J.-H. Yang, and S.-K. Hwang, 2022 Numerical study of noise-induced transitions in nonlinear dynamics of optically injected semiconductor lasers. Nonlinear Theory and Its Applications, IEICE 13: 60–71.
  • Wu, Q., Y. Okabe, and J. Sun, 2014 Investigation of dynamic properties of erbium fiber laser for ultrasonic sensing. Optics express 22: 8405–8419.
  • Xu, L., L. Zhang, Z. Zhang, Z. Gao, J. Tian, et al., 2022 Conventional soliton dynamics of mode-locked erbium-doped fiber lasers. In Second Optics Frontier Conference (OFS 2022), volume 12307, pp. 35–39, SPIE.
  • Zhao, L., D. Li, L. Li, X.Wang, Y. Geng, et al., 2017 Route to larger pulse energy in ultrafast fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics 24: 1–9.
Year 2022, Volume: 4 Issue: 4, 226 - 233, 31.12.2022
https://doi.org/10.51537/chaos.1197559

Abstract

Project Number

320597

References

  • Barba-Franco, J., L. Romo-Muñoz, R. Jaimes-Reategui, J. García- López, G. Huerta-Cuellar, et al., 2022 Electronic equivalent of a pump-modulated erbium-doped fiber laser. Integration p. In press.
  • Bouzid, B., 2011 New erbium doped fiber laser amplifier. In 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), pp. 1–3, IEEE.
  • Cai, X., P. Gu, and Z. Zhang, 2022 Real-time observation of mode locking and q-switching in erbium-doped fiber laser using plasmonic titanium nitride nanoparticles. Journal of Russian Laser Research 43: 169–175.
  • Castillo-Guzmán, A., G. Anzueto-Sánchez, R. Selvas-Aguilar, J. Estudillo-Ayala, R. Rojas-Laguna, et al., 2008 Erbium-doped tunable fiber laser. In Laser Beam Shaping IX, volume 7062, pp. 214–217, SPIE.
  • Digonnet, M., 2001 Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded. CRC, second edition.
  • Doumbia, Y., T. Malica, D.Wolfersberger, K. Panajotov, and M. Sciamanna, 2020 Nonlinear dynamics of a laser diode with an injection of an optical frequency comb. Opt. Express 28: 30379–30390.
  • Doumbia, Y., D.Wolfersberger, K. Panajotov, and M. Sciamanna, 2022 Two polarization comb dynamics in vcsels subject to optical injection. In Photonics, volume 9, p. 115, MDPI.
  • Droste, S., G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, 2016 Optical frequency comb generation based on erbium fiber lasers. Nanophotonics 5: 196–213.
  • Duarte, F., 2009 Tunable Laser Applications. CRC, second edition. Esqueda-de-la Torre, J., J. García-López, G. Huerta-Cuellar, and R. Jaimes-Reategui, 2022 Synchronization of two fiber lasers with optical logarithmic coupler: Experimental implementation. In Complex Systems and Their Applications, pp. 3–21, Springer.
  • Huang, Y., P. Zhou, Y. Zeng, R. Zhang, and N. Li, 2022 Evolution of extreme events in a semiconductor laser subject to chaotic optical injection. Physical Review A 105: 043521.
  • Huerta-Cuellar, G., A. Pisarchik, A. Kir’yanov, Y. O. Barmenkov, and J. del Valle Hernández, 2009 Prebifurcation noise amplification in a fiber laser. Physical Review E 79: 036204.
  • Huerta-Cuellar, G., A. N. Pisarchik, and Y. O. Barmenkov, 2008 Experimental characterization of hopping dynamics in a multistable fiber laser. Physical Review E 78: 035202.
  • Jafry, A., N. Kasim, M. Rusdi, A. Rosol, R. Yusoff, et al., 2020 Max phase based saturable absorber for mode-locked erbium-doped fiber laser. Optics & Laser Technology 127: 106186.
  • Keren, S. and M. Horowitz, 2001 Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses. Optics Letters 26: 328–330.
  • Kir’yanov, A. V., Y. O. Barmenkov, G. E. Sandoval-Romero, and L. Escalante-Zarate, 2013 er3+ concentration effects in commercial erbium-doped silica fibers fabricated through the mcvd and dnd technologies. IEEE Journal of Quantum Electronics 49: 511– 521.
  • Kraus, M., M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, et al., 2010 Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Optics express 18: 22305– 22313.
  • Lim, H., Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, et al., 2005 Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Optics letters 30: 1171–1173.
  • Liu, J., X. Li, J. Feng, C. Zheng, Y.Wang, et al., 2020 Zns nanospheres for optical modulator in an erbium-doped fiber laser. Annalen der Physik 532: 1900454.
  • Luo, L. and P. Chu, 1998 Optical secure communications with chaotic erbium-doped fiber lasers. J. Opt. Soc. Amer. B 15: 2524–2530.
  • Magallón, D. A., R. Jaimes-Reátegui, J. H. García-López, G. Huerta- Cuellar, D. López-Mancilla, et al., 2022 Control of multistability in an erbium-doped fiber laser by an artificial neural network: A numerical approach. Mathematics 10: 3140.
  • Morin, F., F. Druon, M. Hanna, and P. Georges, 2009 Microjoule femtosecond fiber laser at 1.6 μm for corneal surgery applications. Optics letters 34: 1991–1993.
  • Philippov, V., C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, et al., 2004 High-energy in-fiber pulse amplification for coherent lidar applications. Optics letters 29: 2590–2592.
  • Pisarchik, A. and R. Jaimes-Reategui, 2009 Control of basins of attraction in a multistable fiber laser. Physics Letters A 374: 228– 234.
  • Pisarchik, A., R. Jaimes-Reátegui, R. Sevilla-Escoboza, and G. Huerta-Cuellar, 2012 Multistate intermittency and extreme pulses in a fiber laser. Physical Review E 86: 056219.
  • Pisarchik, A., R. Sevilla-Escoboza, R. Jaimes-Reátegui, G. Huerta- Cuellar, J. García-Lopez, et al., 2013 Experimental implementation of a biometric laser synaptic sensor. Sensors pp. 17322– 17331.
  • Pisarchik, A. N. and A. E. Hramov, 2022 Multistability in lasers. In Multistability in Physical and Living Systems, pp. 167–198, Springer.
  • Pisarchik, A. N., R. Jaimes-Reátegui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, 2011 Rogue waves in a multistable system. Physical Review Letters 107: 274101.
  • Pisarchik, A. N., A. V. Kir’yanov, Y. O. Barmenkov, and R. Jaimes- Reátegui, 2005 Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment. JOSA B 22: 2107– 2114.
  • R. Mary, D. C. and A. Kar, 2014 Eapplications of fiber lasers for the development of compact photonic devices. IEEE J. Sel. Top. Quantum Electron 20: 0902513.
  • Reategui, R., A. Kir’yanov, A. Pisarchik, Y. O. Barmenkov, and N. Il’ichev, 2004 Experimental study and modeling of coexisting attractors and bifurcations in an erbium-doped fiber laser with diode-pump modulation. Laser Phys 14: 1277–1281.
  • Sevilla-Escoboza, R., G. Huerta-Cuéllar, R. Jaimes-Reátegui, J. García-López, C. Medel-Ruiz, et al., 2017 Error-feedback control of multistability. Journal of the Franklin Institute 354: 7346– 7358.
  • Sobo´ n, G., 2022 Noise-like pulses in mode-locked fiber lasers. In Dissipative Optical Solitons, pp. 319–337, Springer.
  • Tseng, C.-H., J.-H. Yang, and S.-K. Hwang, 2022 Numerical study of noise-induced transitions in nonlinear dynamics of optically injected semiconductor lasers. Nonlinear Theory and Its Applications, IEICE 13: 60–71.
  • Wu, Q., Y. Okabe, and J. Sun, 2014 Investigation of dynamic properties of erbium fiber laser for ultrasonic sensing. Optics express 22: 8405–8419.
  • Xu, L., L. Zhang, Z. Zhang, Z. Gao, J. Tian, et al., 2022 Conventional soliton dynamics of mode-locked erbium-doped fiber lasers. In Second Optics Frontier Conference (OFS 2022), volume 12307, pp. 35–39, SPIE.
  • Zhao, L., D. Li, L. Li, X.Wang, Y. Geng, et al., 2017 Route to larger pulse energy in ultrafast fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics 24: 1–9.
There are 36 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

José Octavio Esqueda De La Torre 0000-0002-0200-3980

Juan Hugo García López 0000-0002-3739-0781

Rider Jaimes Reátegui 0000-0002-8137-1270

Alexander N. Pisarchik 0000-0003-2471-2507

Guillermo Huerta-cuellar 0000-0003-2956-104X

Project Number 320597
Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 4 Issue: 4

Cite

APA Esqueda De La Torre, J. O., García López, J. H., Jaimes Reátegui, R., N. Pisarchik, A., et al. (2022). Effects of Optical Laser Injection in Multistable Erbium Fiber Lasers. Chaos Theory and Applications, 4(4), 226-233. https://doi.org/10.51537/chaos.1197559

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg