Alpha-Stable Autoregressive Modeling of Chua's Circuit in the Presence of Heavy-Tailed Noise
Year 2023,
Volume: 5 Issue: 1, 3 - 10, 31.03.2023
Serpil Yılmaz
,
Deniz Kutluay
Abstract
This study presents alpha-stable autoregressive (AR) modeling of the dynamics of Chua's circuit in the presence of heavy-tailed noise. The parameters of the AR time series are estimated using the covariation-based Yule-Walker method, and the parameters of alpha-stable distributed residuals are calculated using the regression type method. Visual depictions of the calculated parameters of the AR model and alpha-stable distributions of residuals are presented. The medians of the estimated parameters of the AR model and alpha-stable distributions parameters of residuals are presented for heavy-tailed noise with various stability index parameters. Thus, the impulsive behavior of Chua's circuit can be modeled as alpha-stable AR time series, and the model can provide an alternative approach to describe the chaotic systems driven by heavy-tailed noise.
References
- Anvari, M., L. R. Gorjão, M. Timme, D.Witthaut, B. Schäfer, et al.,
2020 Stochastic properties of the frequency dynamics in real and
synthetic power grids. Physical review research 2: 013339.
- Argyris, J., I. Andreadis, G. Pavlos, and M. Athanasiou, 1998 The
influence of noise on the correlation dimension of chaotic attractors.
Chaos, Solitons & Fractals 9: 343–361.
- Brockwell, P. J. and R. A. Davis, 2002 Introduction to time series and
forecasting. Springer.
- Broszkiewicz-Suwaj, E. and A.Wyłoma´ nska, 2021 Application of
non-gaussian multidimensional autoregressive model for climate
data prediction. International Journal of Advances in Engineering
Sciences and Applied Mathematics 13: 236–247.
- Clavier, L., T. Pedersen, I. R. Larrad, and M. Egan, 2021 Alphastable
model for interference in iot networks. In 2021 IEEE Conference
on Antenna Measurements & Applications (CAMA), pp. 575–
578, IEEE.
- Contreras-Reyes, J. E., 2021 Chaotic systems with asymmetric
heavy-tailed noise: Application to 3d attractors. Chaos, Solitons
& Fractals 145: 110820.
- Contreras-Reyes, J. E., 2022 Rényi entropy and divergence for
varfima processes based on characteristic and impulse response
functions. Chaos, Solitons & Fractals 160: 112268.
- Ditlevsen, P. D., 1999 Observation of α-stable noise induced millennial
climate changes from an ice-core record. Geophysical
Research Letters 26: 1441–1444.
- Gallagher, C. M., 2001 A method for fitting stable autoregressive
models using the autocovariation function. Statistics & probability
letters 53: 381–390.
- Gan, R., B. I. Ahmad, and S. J. Godsill, 2021 Lévy state-space models
for tracking and intent prediction of highly maneuverable
objects. IEEE Transactions on Aerospace and Electronic Systems
57.
- Gan, R. and S. Godsill, 2020 α-stable lévy state-space models for
manoeuvring object tracking. In 2020 IEEE 23rd International
Conference on Information Fusion (FUSION), pp. 1–7, IEEE.
- Grzesiek, A., M. Mrozi ´ nska, P. Giri, S. Sundar, and A.Wyłoma´ nska, 2021 The covariation-based yule–walker method for multidimensional
autoregressive time series with α-stable distributed
noise. International Journal of Advances in Engineering Sciences
and Applied Mathematics 13: 394–414.
- Janczura, J., S. Orzeł, and A. Wyłoma´ nska, 2011 Subordinated α-
stable ornstein–uhlenbeck process as a tool for financial data
description. Physica A: Statistical Mechanics and its Applications
390: 4379–4387.
- Janicki, A. and A. Weron, 1993 Simulation and chaotic behavior of
alpha-stable stochastic processes. CRC Press.
- Kruczek, P., A. Wyłoma´ nska, M. Teuerle, and J. Gajda, 2017 The
modified yule-walker method for α-stable time series models.
Physica A: Statistical Mechanics and its Applications 469: 588–
603.
- Maleki, M., D.Wraith, M. R. Mahmoudi, and J. E. Contreras-Reyes,
2020 Asymmetric heavy-tailed vector auto-regressive processes
with application to financial data. Journal of Statistical Computation
and Simulation 90: 324–340.
- McCulloch, J. H., 1996 13 financial applications of stable distributions.
Handbook of statistics 14: 393–425.
- Nikias, C. L. and M. Shao, 1995 Signal processing with alpha-stable
distributions and applications. Wiley-Interscience.
- Nolan, J., 2003 Stable distributions: models for heavy-tailed data.
Birkhauser New York.
- Pai, J. S. and N. Ravishanker, 2010 Fast bayesian estimation for
varfima processes with stable errors. Journal of Statistical Theory
and Practice 4: 663–677.
- Platen, E., 1999 An introduction to numerical methods for stochastic
differential equations. Acta numerica 8: 197–246.
- Samorodnitsky, G. and M. S. Taqqu, 1994 Stable Non-Gaussian Random
Processes. Chapman & Hall.
- Savaci, F. A. and S. Yilmaz, 2015 Bayesian stable mixture model of
state densities of generalized chua’s circuit. International Journal
of Bifurcation and Chaos 25: 1550038.
- Schäfer, B., C. Beck, K. Aihara, D.Witthaut, and M. Timme, 2018
Non-gaussian power grid frequency fluctuations characterized
by lévy-stable laws and superstatistics. Nature Energy 3: 119–
126.
- Suykens, J. A. and A. Huang, 1997 A family of n-scroll attractors
from a generalized chua’s circuit. Archiv fur Elektronik und
Ubertragungstechnik 51: 131–137.
- Van den Heuvel, F., B. George, N. Schreuder, and F. Fiorini, 2018
Using stable distributions to characterize proton pencil beams.
Medical physics 45: 2278–2288.
- Van den Heuvel, F., S. Hackett, F. Fiorini, C. Taylor, S. Darby,
et al., 2015 Su-f-brd-04: Robustness analysis of proton breast
treatments using an alpha-stable distribution parameterization.
Medical Physics 42: 3526–3526.
- Wesselhöfft, N., 2021 Utilizing self-similar stochastic processes to
model rare events in finance .
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining
lyapunov exponents from a time series. Physica D:
nonlinear phenomena 16: 285–317.
- Yilmaz, S., M. E. Cek, and F. A. Savaci, 2018 Stochastic bifurcation
in generalized chua’s circuit driven by skew-normal distributed
noise. Fluctuation and Noise Letters 17: 1830002.
Year 2023,
Volume: 5 Issue: 1, 3 - 10, 31.03.2023
Serpil Yılmaz
,
Deniz Kutluay
References
- Anvari, M., L. R. Gorjão, M. Timme, D.Witthaut, B. Schäfer, et al.,
2020 Stochastic properties of the frequency dynamics in real and
synthetic power grids. Physical review research 2: 013339.
- Argyris, J., I. Andreadis, G. Pavlos, and M. Athanasiou, 1998 The
influence of noise on the correlation dimension of chaotic attractors.
Chaos, Solitons & Fractals 9: 343–361.
- Brockwell, P. J. and R. A. Davis, 2002 Introduction to time series and
forecasting. Springer.
- Broszkiewicz-Suwaj, E. and A.Wyłoma´ nska, 2021 Application of
non-gaussian multidimensional autoregressive model for climate
data prediction. International Journal of Advances in Engineering
Sciences and Applied Mathematics 13: 236–247.
- Clavier, L., T. Pedersen, I. R. Larrad, and M. Egan, 2021 Alphastable
model for interference in iot networks. In 2021 IEEE Conference
on Antenna Measurements & Applications (CAMA), pp. 575–
578, IEEE.
- Contreras-Reyes, J. E., 2021 Chaotic systems with asymmetric
heavy-tailed noise: Application to 3d attractors. Chaos, Solitons
& Fractals 145: 110820.
- Contreras-Reyes, J. E., 2022 Rényi entropy and divergence for
varfima processes based on characteristic and impulse response
functions. Chaos, Solitons & Fractals 160: 112268.
- Ditlevsen, P. D., 1999 Observation of α-stable noise induced millennial
climate changes from an ice-core record. Geophysical
Research Letters 26: 1441–1444.
- Gallagher, C. M., 2001 A method for fitting stable autoregressive
models using the autocovariation function. Statistics & probability
letters 53: 381–390.
- Gan, R., B. I. Ahmad, and S. J. Godsill, 2021 Lévy state-space models
for tracking and intent prediction of highly maneuverable
objects. IEEE Transactions on Aerospace and Electronic Systems
57.
- Gan, R. and S. Godsill, 2020 α-stable lévy state-space models for
manoeuvring object tracking. In 2020 IEEE 23rd International
Conference on Information Fusion (FUSION), pp. 1–7, IEEE.
- Grzesiek, A., M. Mrozi ´ nska, P. Giri, S. Sundar, and A.Wyłoma´ nska, 2021 The covariation-based yule–walker method for multidimensional
autoregressive time series with α-stable distributed
noise. International Journal of Advances in Engineering Sciences
and Applied Mathematics 13: 394–414.
- Janczura, J., S. Orzeł, and A. Wyłoma´ nska, 2011 Subordinated α-
stable ornstein–uhlenbeck process as a tool for financial data
description. Physica A: Statistical Mechanics and its Applications
390: 4379–4387.
- Janicki, A. and A. Weron, 1993 Simulation and chaotic behavior of
alpha-stable stochastic processes. CRC Press.
- Kruczek, P., A. Wyłoma´ nska, M. Teuerle, and J. Gajda, 2017 The
modified yule-walker method for α-stable time series models.
Physica A: Statistical Mechanics and its Applications 469: 588–
603.
- Maleki, M., D.Wraith, M. R. Mahmoudi, and J. E. Contreras-Reyes,
2020 Asymmetric heavy-tailed vector auto-regressive processes
with application to financial data. Journal of Statistical Computation
and Simulation 90: 324–340.
- McCulloch, J. H., 1996 13 financial applications of stable distributions.
Handbook of statistics 14: 393–425.
- Nikias, C. L. and M. Shao, 1995 Signal processing with alpha-stable
distributions and applications. Wiley-Interscience.
- Nolan, J., 2003 Stable distributions: models for heavy-tailed data.
Birkhauser New York.
- Pai, J. S. and N. Ravishanker, 2010 Fast bayesian estimation for
varfima processes with stable errors. Journal of Statistical Theory
and Practice 4: 663–677.
- Platen, E., 1999 An introduction to numerical methods for stochastic
differential equations. Acta numerica 8: 197–246.
- Samorodnitsky, G. and M. S. Taqqu, 1994 Stable Non-Gaussian Random
Processes. Chapman & Hall.
- Savaci, F. A. and S. Yilmaz, 2015 Bayesian stable mixture model of
state densities of generalized chua’s circuit. International Journal
of Bifurcation and Chaos 25: 1550038.
- Schäfer, B., C. Beck, K. Aihara, D.Witthaut, and M. Timme, 2018
Non-gaussian power grid frequency fluctuations characterized
by lévy-stable laws and superstatistics. Nature Energy 3: 119–
126.
- Suykens, J. A. and A. Huang, 1997 A family of n-scroll attractors
from a generalized chua’s circuit. Archiv fur Elektronik und
Ubertragungstechnik 51: 131–137.
- Van den Heuvel, F., B. George, N. Schreuder, and F. Fiorini, 2018
Using stable distributions to characterize proton pencil beams.
Medical physics 45: 2278–2288.
- Van den Heuvel, F., S. Hackett, F. Fiorini, C. Taylor, S. Darby,
et al., 2015 Su-f-brd-04: Robustness analysis of proton breast
treatments using an alpha-stable distribution parameterization.
Medical Physics 42: 3526–3526.
- Wesselhöfft, N., 2021 Utilizing self-similar stochastic processes to
model rare events in finance .
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining
lyapunov exponents from a time series. Physica D:
nonlinear phenomena 16: 285–317.
- Yilmaz, S., M. E. Cek, and F. A. Savaci, 2018 Stochastic bifurcation
in generalized chua’s circuit driven by skew-normal distributed
noise. Fluctuation and Noise Letters 17: 1830002.