Monitoring Blood Pressure Variability via Chaotic Global Metrics using Local Field Potential Oscillations
Year 2023,
Volume: 5 Issue: 2, 65 - 77, 31.07.2023
David Garner
,
Shouyan Wang
Ashley Raghu
Vitor Valenti
Tipu Aziz
Alexander Green
Abstract
The intention was to associate blood pressure (BP) variability (BPV) measurements to Local field potentials (LFPs). Thus, assessing how LFPs can co-vary with BPV to permit implantable brain devices (via LFPs) to control output. Elevated BPV is a considerable cardiovascular disease risk factor. Often patients are resistant to pharmacotherapies. An alternative treatment is Deep Brain Stimulation (DBS). Mathematical techniques based on nonlinear dynamics assessed their correlation of BPV chaotic global metrics to LFPs. Chaos Forward Parameter (CFP6) was computed for LFPs, at three electrode depths in the mid-brain and sensory thalamus. Mean, root mean square of the successive differences (RMSSD) and the chaotic global metrics (CFP1 to CFP7) were computed for the BP signal. The right ventroposterolateral (RVPL) nucleus provided a substantial correlation via CFP6 for BP with R-squared up to approximately 79% by means of LFP gamma oscillations. Investigation of BPV via LFPs as a proxy marker might allow therapies to be attuned in a closed-loop system. Whilst all patients were chronic pain patients the chaotic global relationship should be unperturbed. LFPs correlation does not unconditionally predict its causation. There is no certainty DBS in these locations would be therapeutic but can be used as an assessment tool.
Supporting Institution
National Institute of Health (NIHR) Oxford Biomedical Research Centre.
Project Number
Study number 05 Q1605 47
References
- Alkan, A. and M. K. Kiymik, 2006 Comparison of AR and Welch
methods in epileptic seizure detection. J Med Syst 30: 413–9.
- Alkan, A. and A. S. Yilmaz, 2007 Frequency domain analysis of
power system transients using Welch and Yule-Walker AR methods.
Energy conversion and management 48: 2129–2135.
- Appiah, K. O. B., M. Nath, L. Manning,W. J. Davison, S. Mazzucco,
et al., 2021 Increasing blood pressure variability predicts poor
functional outcome following acute stroke. Journal of Stroke and
Cerebrovascular Diseases 30.
- Bacan, G., A. Ribeiro-Silva, V. A. Oliveira, C. R. Cardoso, and
G. F. Salles, 2022 Refractory hypertension: a narrative systematic
review with emphasis on prognosis. Current Hypertension
Reports 24: 95–106.
- Bar, K. J., S. Berger, M. Metzner, M. K. Boettger, S. Schulz, et al., 2010
Autonomic dysfunction in unaffected first-degree relatives of
patients suffering from schizophrenia. Schizophr Bull 36: 1050–8.
- Bar, K. J., M. K. Boettger, M. Koschke, S. Schulz, P. Chokka, et al.,
2007 Non-linear complexity measures of heart rate variability in
acute schizophrenia. Clin Neurophysiol 118: 2009–15.
- Barreto, G. S., F. M. Vanderlei, L. C. M. Vanderlei, and D. M. Garner,
2014 Risk appraisal by novel chaotic globals to HRV in subjects
with malnutrition. Journal of Human Growth and Development
24: 243–248.
- Belair, J., L. Glass, U. an der Heiden, and J. Milton, 1995 Dynamical
disease: identification, temporal aspects and treatment strategies
of human illness. Chaos: An Interdisciplinary Journal of
Nonlinear Science 5: 1–7.
- Benjamim, C. J. R., Y. Mota de M. Pontes, F. Welington de Sousa Junior,
A. A. Porto, C. R. Bueno Junior, et al., 2021 Does bariatric
surgery improve cardiac autonomic modulation assessed by
heart rate variability: a systematic review. Surgery for Obesity
and Related Diseases .
- Bernardo, A. F., L. C. Vanderlei, and D. M. Garner, 2014 HRV analysis:
A clinical and diagnostic tool in chronic obstructive pulmonary
disease. Int Sch Res Notices 2014: 673232.
- Bittar, R. G., I. Kar-Purkayastha, S. L. Owen, R. E. Bear, A. Green,
et al., 2005 Deep brain stimulation for pain relief: a metaanalysis.
J Clin Neurosci 12: 515–9.
- Bonatto, C., J. Gallas, and Y. Ueda, 2008 Chaotic phase similarities
and recurrences in a damped-driven duffing oscillator.
Phys.Rev.E.Stat.Nonlin.Soft.Matter Phys. 77: 026217.
- Calhoun, D. A., J. N. Booth III, S. Oparil, M. R. Irvin, D. Shimbo,
et al., 2014 Refractory hypertension: determination of prevalence,
risk factors, and comorbidities in a large, population-based cohort.
Hypertension 63: 451–458.
- Cameron, A. A., I. A. Khan, K. N. Westlund, K. D. Cliffer, and
W. D. Willis, 1995 The efferent projections of the periaqueductal
gray in the rat: A phaseolus vulgaris-leucoagglutinin study. I.
Ascending projections. Journal of Comparative Neurology 351:
568–584.
- Camm, A., M. Malik, J. Bigger, G. Breithardt, S. Cerutti, et al., 1996
Heart rate variability: standards of measurement, physiological
interpretation and clinical use. task force of the european society
of cardiology and the north american society of pacing and
electrophysiology. Circulation 93: 1043–1065.
- Carrive, P. and R. Bandler, 1991 Viscerotopic organization of neurons
subserving hypotensive reactions within the midbrain periaqueductal
grey: a correlative functional and anatomical study.
Brain research 541: 206–215.
- Chang, S., 2010 Physiological rhythms, dynamical diseases and
acupuncture. Chin J Physiol 53: 77–90.
- Cook, R. D. and S.Weisberg, 1982 Residuals and influence in regression.
New York: Chapman and Hall.
- Corrao, G., A. Parodi, F. Nicotra, A. Zambon, L. Merlino, et al.,
2011 Better compliance to antihypertensive medications reduces
cardiovascular risk. Journal of hypertension 29: 610–618.
- Das, K., J. Jiang, and J. Rao, 2004 Mean squared error of empirical
predictor. The Annals of Statistics 32: 818–840.
- Dauer, W. and S. Przedborski, 2003 Parkinson’s disease: mechanisms
and models. Neuron 39: 889–909.
- Day, B. P., A. Evers, and D. E. Hack, 2020 Multipath suppression for
continuous wave radar via slepian sequences. IEEE Transactions
on Signal Processing 68: 548–557.
- De Souza, N. M., L. C. M. Vanderlei, and D. M. Garner, 2015 Risk
evaluation of diabetes mellitus by relation of chaotic globals to
HRV. Complexity 20: 84–92.
- Dirac, P., 1939 New notation for quantum mechanics. Proceedings
of the Cambridge Philosophical Society 35: 416.
- Dolan, E. and E. O’Brien, 2010 Blood pressure variability clarity
for clinical practice. Hypertension 56: 179–181.
- Farkas, E., A. S. Jansen, and A. D. Loewy, 1997 Periaqueductal
gray matter projection to vagal preganglionic neurons and the
nucleus tractus solitarius. Brain research 764: 257–261.
- Farkas, E., A. S. Jansen, and A. D. Loewy, 1998 Periaqueductal gray
matter input to cardiac-related sympathetic premotor neurons.
Brain research 792: 179–192.
- Frank, G., F. Halberg, R. Harner, J. Matthews, E. Johnson, et al.,
1966 Circadian periodicity, adrenal corticosteroids, and the eeg
of normal man. J.Psychiatr.Res. 4: 73–86.
- Galhardo, C., T. Penna, M. A. de Menezes, and P. Soares, 2009 Detrended
fluctuation analysis of a systolic blood pressure control
loop. New Journal of Physics 11: 103005.
- Garner, D., M. Alves, B. da Silva, L. de Alcantara Sousa, and
V. Valenti, 2020a Chaotic global analysis of heart rate variability
following power spectral adjustments during exposure to traffic
noise in healthy adult women. Russ J Cardiol 25: 3739.
- Garner, D., A. Bernardo, and L. Vanderlei, 2021a HRV analysis:
Unpredictability of approximate entropy in chronic obstructive
pulmonary disease. Series Cardiol Res 3(1): 1–10.
- Garner, D., N. de Souza, and L. Vanderlei, 2020b Unreliability of
approximate entropy to locate optimal complexity in diabetes
mellitus via heart rate variability. Series Endo Diab Met. 2: 32–40.
- Garner, D., F. Vanderlei, L. Vanderlei, V. Valenti, C. J. R. Benjamim,et al., 2022 Chaotic global metric analysis of heart rate variability following six power spectral manipulations in malnourished children. Series Endo Diab Met. 4: 44–58.
- Garner, D. M., G. S. Barreto, V. E. Valenti, F. M. Vanderlei, A. A.
Porto, et al., 2021b HRV analysis: undependability of approximate
entropy at locating optimum complexity in malnourished
children. Cardiol Young pp. 1–6.
- Garner, D. M., N. M. de Souza, V. E. Valenti, and L. C. M. Vanderlei,
2019a Complexity of cardiac autonomic modulation in diabetes
mellitus: A new technique to perceive autonomic dysfunction.
Romanian Journal of Diabetes Nutrition and Metabolic Diseases
26: 279–291.
- Garner, D. M., N. M. De Souza, and L. C. M. Vanderlei, 2017 Risk
assessment of diabetes mellitus by chaotic globals to heart rate
variability via six power spectra. Romanian Journal of Diabetes
Nutrition and Metabolic Diseases 24: 227–236.
- Garner, D. M., N. M. de Souza, and L. C. M. Vanderlei, 2018 Heart
rate variability analysis: Higuchi and katz’s fractal dimensions
in subjects with type 1 diabetes mellitus. Romanian Journal of
Diabetes Nutrition and Metabolic Diseases 25: 289–295.
- Garner, D. M. and B. W. K. Ling, 2014 Measuring and locating
zones of chaos and irregularity. J Syst Sci Complex 27: 494–506.
- Garner, D. M. and B. W.-K. Ling, 2021 Measuring and locating
zones of chaos and irregularity by application of high spectral
chaotic global variants. International Journal of Bifurcation and
Chaos 31: 2150236.
- Garner, D. M., F. M. Vanderlei, V. E. Valenti, and L. C. M. Vanderlei,
2019b Non-linear regulation of cardiac autonomic modulation
in obese youths: interpolation of ultra-short time series. Cardiol
Young pp. 1–6.
- Ghil, M., 1997 The SSA-MTM toolkit: Applications to analysis and
prediction of time series. Applications of Soft Computing 3165:
216–230.
- Gould, S. H., 1995 Variational methods for eigenvalue problems: an introduction
to the methods of Rayleigh, Ritz, Weinstein, and Aronszajn.
Courier Dover Publications.
- Gourieroux, C., A. Monfort, E. Renault, and A. Trognon, 1987
Generalised residuals. Journal of econometrics 34: 5–32.
- Gray, J. B. andW. H.Woodall, 1994 The maximum size of standardized
and internally studentized residuals in regression analysis.
The American Statistician 48: 111–113.
- Green, A. L., S.Wang, S. L. Owen, K. Xie, X. Liu, et al., 2005 Deep
brain stimulation can regulate arterial blood pressure in awake
humans. Neuroreport 16: 1741–5.
- Henriques, T. S., M. D. Costa, P. Mathur, P. Mathur, R. B. Davis,
et al., 2019 Complexity of preoperative blood pressure dynamics:
possible utility in cardiac surgical risk assessment. Journal of
clinical monitoring and computing 33: 31–38.
- Hocht, C., 2013 Blood pressure variability: prognostic value and
therapeutic implications. ISRN Hypertension 2013.
- Hodgetts, S. and M. Hausmann, 2022 in Sex/Gender Differences in
Brain Lateralisation and Connectivity, Springer.
- Hwang, W., D. Kang, and D. Kim, 2022 Brain lateralisation feature
extraction and ant colony optimisation-bidirectional LSTM network
model for emotion recognition. IET Signal Processing 16:
45–61.
- Jeppesen, J., S. Beniczky, P. Johansen, P. Sidenius, and A. Fuglsang-
Frederiksen, 2015 Detection of epileptic seizures with a modified
heart rate variability algorithm based on lorenz plot. Seizure 24:
1–7.
- Jinadasa, S. P., A. Mueller, V. Prasad, K. Subramaniam, T. Heldt,
et al., 2018 Blood pressure coefficient of variation and its association
with cardiac surgical outcomes. Anesthesia & Analgesia
127: 832–839.
- Jolliffe, I., 2005 Principal component analysis. Wiley Online Library.
Kim, J.-S., S. Park, P. Yan, B.W. Jeffers, and C. Cerezo, 2016 Effect
of inter-individual blood pressure variability on the progression
of atherosclerosis in carotid and coronary arteries: a post hoc
analysis of the normalise and prevent studies. European Heart
Journal-Cardiovascular Pharmacotherapy 3: 82–89.
- Krout, K. E. and A. D. Loewy, 2000 Periaqueductal gray matter
projections to midline and intralaminar thalamic nuclei of the
rat. Journal of Comparative Neurology 424: 111–141.
- Lang, A. E. and A. M. Lozano, 1998 Parkinson’s disease. New
England Journal of Medicine 339: 1130–1143.
- Mackey, M. C. and J. G. Milton, 1987 Dynamical diseases. Ann N Y
Acad Sci 504: 16–32.
- Mancia, G., R. Fagard, K. Narkiewicz, J. Redon, A. Zanchetti, et al.,
2013 2013 esh/esc guidelines for the management of arterial
hypertension: the task force for the management of arterial
hypertension of the european society of hypertension (esh) and
of the european society of cardiology (esc). Blood pressure 22:
193–278.
- Marcinkiewicz, M., R. Morcos, and M. Chretien, 1989 CNS connections
with the median raphe nucleus: Retrograde tracing with
wga-apohrp-gold complex in the rat. Journal of Comparative
Neurology 289: 11–35.
- Matanes, F., M. B. Khan, M. Siddiqui, T. Dudenbostel, D. Calhoun,
et al., 2022 An update on refractory hypertension. Current Hypertension
Reports 24: 225–234.
- McAfee, S. S., 2017 Assessing Neuronal Synchrony and Brain Function
Through Local Field Potential and Spike Analysis. Thesis.
Miles, J., 2005 R-squared, adjusted r-squared. Encyclopedia of
statistics in behavioral science .
- Mustafa, E. R., O. Istratoaie, and R. Musetescu, 2016 Blood pressure
variability and left ventricular mass in hypertensive patients.
Current health sciences journal 42: 47.
- Nazaraghaei, F. and K. K. Bhat, 2020 Physiological impacts of ajapajapa
yogic meditation on HRV index, RMSSD, PNN50, heart rate and
GSR following three-month training course in comparison to FG
meditation. Journal of Advanced Medical Sciences and Applied
Technologies 5.
- Newman, D., S. Hilleary, and C. Ginsberg, 1989 Nuclear terminations
of corticoreticular fiber systems in rats; pp. 253-264. Brain,
behavior and evolution 34: 253–264.
- Nogueira, M. L., D. M. Garner, F. M. Vanderlei, L. C. de Abreu,
and V. E. Valenti, 2017 Higuchi fractal dimension applied to
rr intervals during exposure to musical auditory stimulation.
Indian J Physiol Pharmacol 61: 211–218.
- O’Callaghan, E. L., E. C. Hart, H. Sims-Williams, S. Javed, A. E.
Burchell, et al., 2017 Chronic deep brain stimulation decreases
blood pressure and sympathetic nerve activity in a drug-and
device-resistant hypertensive patient. Hypertension 69: 522–528.
- Osipov, V. and E. Ponizovskaya, 2000 Stochastic resonance in the
brusselator model. Phys.Rev.E.Stat.Phys.Plasmas.Fluids Relat
Interdiscip.Topics. 61: 4603–4605.
- Packiasabapathy, S., V. Prasad, V. Rangasamy, D. Popok, X. Xu,
et al., 2020 Cardiac surgical outcome prediction by blood pressure
variability indices poincare plot and coefficient of variation:
a retrospective study. BMC anesthesiology 20: 1–12.
- Palatini, P., 2018 Risk of developing foot ulcers in diabetes: contribution
of high visit-to-visit blood pressure variability. Journal of
hypertension 36: 2132–2134.
- Parati, G., G. Bilo, and M. Valentini, 2008 Blood pressure vari-ability: methodological aspects, pathophysiological and clinical implications. Manual of Hypertension of the European Society of Hypertension p. 61.
- Parati, G., J. E. Ochoa, and G. Bilo, 2012 Blood pressure variability,
cardiovascular risk, and risk for renal disease progression.
Current hypertension reports 14: 421–431.
- Parati, G., J. E. Ochoa, C. Lombardi, and G. Bilo, 2013 Assessment
and management of blood-pressure variability. Nature Reviews
Cardiology 10: 143–155.
- Parati, G., G. S. Stergiou, E. Dolan, and G. Bilo, 2018 Blood pressure
variability: clinical relevance and application. The Journal of
Clinical Hypertension 20: 1133–1137.
- Patel, N., S. Javed, S. Khan, M. Papouchado, A. Malizia, et al.,
2011 Deep brain stimulation relieves refractory hypertension.
Neurology 76: 405–407.
- Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger, 1995
Quantification of scaling exponents and crossover phenomena
in nonstationary heartbeat time series. Chaos 5: 82–7.
- Percival, D. and A.Walden, 1993 Spectral Analysis for Physical Applications:
Multitaper and Conventional Univariate Techniques. Cambridge
University Press, New York.
- Pezard, L., J.-L. Nandrino, B. Renault, F. El Massioui, J.-F. Allilaire,
et al., 1996 Depression as a dynamical disease. Biological Psychiatry
39: 991–999.
- Pierce, D. A. and D. W. Schafer, 1986 Residuals in generalized
linear models. Journal of the American Statistical Association 81:
977–986.
- Pincus, S., 1995 Approximate entropy (apen) as a complexity measure.
Chaos: An Interdisciplinary Journal of Nonlinear Science
5: 110–117.
- Ploner, M., C. Sorg, and J. Gross, 2017 Brain rhythms of pain.
Trends in cognitive sciences 21: 100–110.
- Prigogine, I., 1962 Non-equilibrium statistical mechanics.. New York:
Interscience.
- Rangasamy, V., T. S. Henriques, X. Xu, and B. Subramaniam, 2020
Preoperative blood pressure complexity indices as a marker
for frailty in patients undergoing cardiac surgery. Journal of
cardiothoracic and vascular anesthesia 34: 616–621.
- Richman, J. S. and J. R. Moorman, 2000 Physiological time-series
analysis using approximate entropy and sample entropy. Am J
Physiol Heart Circ Physiol 278: H2039–49.
- Rothwell, P. M., S. C. Howard, E. Dolan, E. O’Brien, J. E. Dobson,
et al., 2010 Effects of beta-blockers and calcium-channel blockers
on within-individual variability in blood pressure and risk of
stroke. The Lancet Neurology 9: 469–480.
- Schmitt, L., J. Regnard, and G. P. Millet, 2015 Monitoring fatigue
status with HRV measures in elite athletes: an avenue beyond
RMSSD. Frontiers in physiology 6: 343.
- Shannon, C. E., 2001 A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications
Review 5: 3–55.
- Silke, B., M. A. Frais, K. A. Midtbo, S. P. Verma, S. Sharma, et al.,
1987 Comparative hemodynamic dose-response effects of five
slow calcium channel-blocking agents in coronary artery disease.
Clin Pharmacol Ther 42: 381–7.
- Slepian, S., 1978 Prolate spheroidal wave functions, fourier analysis
and uncertainty, v, the discrete case. Bell Syst Tech J 57: 1371–
1430.
- Spallone, V., 2018 Blood pressure variability and autonomic dysfunction.
Current Diabetes Reports 18: 137.
- Srinivasan, V., N. Udayakumar, H. Liang, and K. Anandan, 2022
A hybrid approach for analysis of brain lateralisation in autistic
children using graph theory techniques and deep belief networks.
International Journal of Biomedical Engineering and
Technology 39: 40–64.
- Stoco-Oliveira, M. C., A. L. Ricci-Vitor, L. M. Vanzella, H. B. Valente,
V. E. d. S. Silva, et al., 2021 Parkinson’s disease effect on
autonomic modulation: an analysis using geometric indices.
Arquivos de Neuro-Psiquiatria 79: 114–121.
- Subasi, A., 2007 Selection of optimal AR spectral estimation method
for eeg signals using cramer-rao bound. Comput.Biol.Med. 37:
183–194.
- Thomson, D. J., 1982 Spectrum estimation and harmonic analysis.
Proceedings of the IEEE 70: 1055–1096.
- Tuchler, M., A. C. Singer, and R. Koetter, 2002 Minimum mean
squared error equalization using a priori information. IEEE
Transactions on Signal processing 50: 673–683.
- Vautard, R., P. Yiou, and M. Ghil, 1992 Singular-spectrum analysis
- a toolkit for short, noisy chaotic signals. Physica D 58: 95–126.
- Voss, A., V. Baier, S. Schulz, and K. J. Bar, 2006 Linear and nonlinear
methods for analyses of cardiovascular variability in bipolar
disorders. Bipolar Disord 8: 441–52.
- Wajnsztejn, R., T. D. De Carvalho, D. M. Garner, L. C. M. Vanderlei,
M. F. Godoy, et al., 2016 Heart rate variability analysis by chaotic
global techniques in children with attention deficit hyperactivity
disorder. Complexity 21: 412–419.
- Wang, Z. and A. C. Bovik, 2009 Mean squared error: Love it or
leave it: a new look at signal fidelity measures. IEEE signal
processing magazine 26: 98–117.
- Webb, A. J., A. Lawson, K. Wartolowska, S. Mazzucco, and P. M.
Rothwell, 2021 Progression of beat-to-beat blood pressure variability
despite best medical management. Hypertension 77: 193–
201.
- Whitmer, D., C. de Solages, B. C. Hill, H. Yu, and
H. Bronte-Stewart, 2013 Resting beta hypersynchrony in secondary
dystonia and its suppression during pallidal deep brain
stimulation in DYT3+ l ubag dystonia. Neuromodulation: Technology
at the Neural Interface 16: 200–205.
- Zhou, T. L., R. M. Henry, C. D. Stehouwer, T. T. van Sloten, K. D.
Reesink, et al., 2018 Blood pressure variability, arterial stiffness,
and arterial remodeling: The maastricht study. Hypertension 72:
1002–1010.
Year 2023,
Volume: 5 Issue: 2, 65 - 77, 31.07.2023
David Garner
,
Shouyan Wang
Ashley Raghu
Vitor Valenti
Tipu Aziz
Alexander Green
Project Number
Study number 05 Q1605 47
References
- Alkan, A. and M. K. Kiymik, 2006 Comparison of AR and Welch
methods in epileptic seizure detection. J Med Syst 30: 413–9.
- Alkan, A. and A. S. Yilmaz, 2007 Frequency domain analysis of
power system transients using Welch and Yule-Walker AR methods.
Energy conversion and management 48: 2129–2135.
- Appiah, K. O. B., M. Nath, L. Manning,W. J. Davison, S. Mazzucco,
et al., 2021 Increasing blood pressure variability predicts poor
functional outcome following acute stroke. Journal of Stroke and
Cerebrovascular Diseases 30.
- Bacan, G., A. Ribeiro-Silva, V. A. Oliveira, C. R. Cardoso, and
G. F. Salles, 2022 Refractory hypertension: a narrative systematic
review with emphasis on prognosis. Current Hypertension
Reports 24: 95–106.
- Bar, K. J., S. Berger, M. Metzner, M. K. Boettger, S. Schulz, et al., 2010
Autonomic dysfunction in unaffected first-degree relatives of
patients suffering from schizophrenia. Schizophr Bull 36: 1050–8.
- Bar, K. J., M. K. Boettger, M. Koschke, S. Schulz, P. Chokka, et al.,
2007 Non-linear complexity measures of heart rate variability in
acute schizophrenia. Clin Neurophysiol 118: 2009–15.
- Barreto, G. S., F. M. Vanderlei, L. C. M. Vanderlei, and D. M. Garner,
2014 Risk appraisal by novel chaotic globals to HRV in subjects
with malnutrition. Journal of Human Growth and Development
24: 243–248.
- Belair, J., L. Glass, U. an der Heiden, and J. Milton, 1995 Dynamical
disease: identification, temporal aspects and treatment strategies
of human illness. Chaos: An Interdisciplinary Journal of
Nonlinear Science 5: 1–7.
- Benjamim, C. J. R., Y. Mota de M. Pontes, F. Welington de Sousa Junior,
A. A. Porto, C. R. Bueno Junior, et al., 2021 Does bariatric
surgery improve cardiac autonomic modulation assessed by
heart rate variability: a systematic review. Surgery for Obesity
and Related Diseases .
- Bernardo, A. F., L. C. Vanderlei, and D. M. Garner, 2014 HRV analysis:
A clinical and diagnostic tool in chronic obstructive pulmonary
disease. Int Sch Res Notices 2014: 673232.
- Bittar, R. G., I. Kar-Purkayastha, S. L. Owen, R. E. Bear, A. Green,
et al., 2005 Deep brain stimulation for pain relief: a metaanalysis.
J Clin Neurosci 12: 515–9.
- Bonatto, C., J. Gallas, and Y. Ueda, 2008 Chaotic phase similarities
and recurrences in a damped-driven duffing oscillator.
Phys.Rev.E.Stat.Nonlin.Soft.Matter Phys. 77: 026217.
- Calhoun, D. A., J. N. Booth III, S. Oparil, M. R. Irvin, D. Shimbo,
et al., 2014 Refractory hypertension: determination of prevalence,
risk factors, and comorbidities in a large, population-based cohort.
Hypertension 63: 451–458.
- Cameron, A. A., I. A. Khan, K. N. Westlund, K. D. Cliffer, and
W. D. Willis, 1995 The efferent projections of the periaqueductal
gray in the rat: A phaseolus vulgaris-leucoagglutinin study. I.
Ascending projections. Journal of Comparative Neurology 351:
568–584.
- Camm, A., M. Malik, J. Bigger, G. Breithardt, S. Cerutti, et al., 1996
Heart rate variability: standards of measurement, physiological
interpretation and clinical use. task force of the european society
of cardiology and the north american society of pacing and
electrophysiology. Circulation 93: 1043–1065.
- Carrive, P. and R. Bandler, 1991 Viscerotopic organization of neurons
subserving hypotensive reactions within the midbrain periaqueductal
grey: a correlative functional and anatomical study.
Brain research 541: 206–215.
- Chang, S., 2010 Physiological rhythms, dynamical diseases and
acupuncture. Chin J Physiol 53: 77–90.
- Cook, R. D. and S.Weisberg, 1982 Residuals and influence in regression.
New York: Chapman and Hall.
- Corrao, G., A. Parodi, F. Nicotra, A. Zambon, L. Merlino, et al.,
2011 Better compliance to antihypertensive medications reduces
cardiovascular risk. Journal of hypertension 29: 610–618.
- Das, K., J. Jiang, and J. Rao, 2004 Mean squared error of empirical
predictor. The Annals of Statistics 32: 818–840.
- Dauer, W. and S. Przedborski, 2003 Parkinson’s disease: mechanisms
and models. Neuron 39: 889–909.
- Day, B. P., A. Evers, and D. E. Hack, 2020 Multipath suppression for
continuous wave radar via slepian sequences. IEEE Transactions
on Signal Processing 68: 548–557.
- De Souza, N. M., L. C. M. Vanderlei, and D. M. Garner, 2015 Risk
evaluation of diabetes mellitus by relation of chaotic globals to
HRV. Complexity 20: 84–92.
- Dirac, P., 1939 New notation for quantum mechanics. Proceedings
of the Cambridge Philosophical Society 35: 416.
- Dolan, E. and E. O’Brien, 2010 Blood pressure variability clarity
for clinical practice. Hypertension 56: 179–181.
- Farkas, E., A. S. Jansen, and A. D. Loewy, 1997 Periaqueductal
gray matter projection to vagal preganglionic neurons and the
nucleus tractus solitarius. Brain research 764: 257–261.
- Farkas, E., A. S. Jansen, and A. D. Loewy, 1998 Periaqueductal gray
matter input to cardiac-related sympathetic premotor neurons.
Brain research 792: 179–192.
- Frank, G., F. Halberg, R. Harner, J. Matthews, E. Johnson, et al.,
1966 Circadian periodicity, adrenal corticosteroids, and the eeg
of normal man. J.Psychiatr.Res. 4: 73–86.
- Galhardo, C., T. Penna, M. A. de Menezes, and P. Soares, 2009 Detrended
fluctuation analysis of a systolic blood pressure control
loop. New Journal of Physics 11: 103005.
- Garner, D., M. Alves, B. da Silva, L. de Alcantara Sousa, and
V. Valenti, 2020a Chaotic global analysis of heart rate variability
following power spectral adjustments during exposure to traffic
noise in healthy adult women. Russ J Cardiol 25: 3739.
- Garner, D., A. Bernardo, and L. Vanderlei, 2021a HRV analysis:
Unpredictability of approximate entropy in chronic obstructive
pulmonary disease. Series Cardiol Res 3(1): 1–10.
- Garner, D., N. de Souza, and L. Vanderlei, 2020b Unreliability of
approximate entropy to locate optimal complexity in diabetes
mellitus via heart rate variability. Series Endo Diab Met. 2: 32–40.
- Garner, D., F. Vanderlei, L. Vanderlei, V. Valenti, C. J. R. Benjamim,et al., 2022 Chaotic global metric analysis of heart rate variability following six power spectral manipulations in malnourished children. Series Endo Diab Met. 4: 44–58.
- Garner, D. M., G. S. Barreto, V. E. Valenti, F. M. Vanderlei, A. A.
Porto, et al., 2021b HRV analysis: undependability of approximate
entropy at locating optimum complexity in malnourished
children. Cardiol Young pp. 1–6.
- Garner, D. M., N. M. de Souza, V. E. Valenti, and L. C. M. Vanderlei,
2019a Complexity of cardiac autonomic modulation in diabetes
mellitus: A new technique to perceive autonomic dysfunction.
Romanian Journal of Diabetes Nutrition and Metabolic Diseases
26: 279–291.
- Garner, D. M., N. M. De Souza, and L. C. M. Vanderlei, 2017 Risk
assessment of diabetes mellitus by chaotic globals to heart rate
variability via six power spectra. Romanian Journal of Diabetes
Nutrition and Metabolic Diseases 24: 227–236.
- Garner, D. M., N. M. de Souza, and L. C. M. Vanderlei, 2018 Heart
rate variability analysis: Higuchi and katz’s fractal dimensions
in subjects with type 1 diabetes mellitus. Romanian Journal of
Diabetes Nutrition and Metabolic Diseases 25: 289–295.
- Garner, D. M. and B. W. K. Ling, 2014 Measuring and locating
zones of chaos and irregularity. J Syst Sci Complex 27: 494–506.
- Garner, D. M. and B. W.-K. Ling, 2021 Measuring and locating
zones of chaos and irregularity by application of high spectral
chaotic global variants. International Journal of Bifurcation and
Chaos 31: 2150236.
- Garner, D. M., F. M. Vanderlei, V. E. Valenti, and L. C. M. Vanderlei,
2019b Non-linear regulation of cardiac autonomic modulation
in obese youths: interpolation of ultra-short time series. Cardiol
Young pp. 1–6.
- Ghil, M., 1997 The SSA-MTM toolkit: Applications to analysis and
prediction of time series. Applications of Soft Computing 3165:
216–230.
- Gould, S. H., 1995 Variational methods for eigenvalue problems: an introduction
to the methods of Rayleigh, Ritz, Weinstein, and Aronszajn.
Courier Dover Publications.
- Gourieroux, C., A. Monfort, E. Renault, and A. Trognon, 1987
Generalised residuals. Journal of econometrics 34: 5–32.
- Gray, J. B. andW. H.Woodall, 1994 The maximum size of standardized
and internally studentized residuals in regression analysis.
The American Statistician 48: 111–113.
- Green, A. L., S.Wang, S. L. Owen, K. Xie, X. Liu, et al., 2005 Deep
brain stimulation can regulate arterial blood pressure in awake
humans. Neuroreport 16: 1741–5.
- Henriques, T. S., M. D. Costa, P. Mathur, P. Mathur, R. B. Davis,
et al., 2019 Complexity of preoperative blood pressure dynamics:
possible utility in cardiac surgical risk assessment. Journal of
clinical monitoring and computing 33: 31–38.
- Hocht, C., 2013 Blood pressure variability: prognostic value and
therapeutic implications. ISRN Hypertension 2013.
- Hodgetts, S. and M. Hausmann, 2022 in Sex/Gender Differences in
Brain Lateralisation and Connectivity, Springer.
- Hwang, W., D. Kang, and D. Kim, 2022 Brain lateralisation feature
extraction and ant colony optimisation-bidirectional LSTM network
model for emotion recognition. IET Signal Processing 16:
45–61.
- Jeppesen, J., S. Beniczky, P. Johansen, P. Sidenius, and A. Fuglsang-
Frederiksen, 2015 Detection of epileptic seizures with a modified
heart rate variability algorithm based on lorenz plot. Seizure 24:
1–7.
- Jinadasa, S. P., A. Mueller, V. Prasad, K. Subramaniam, T. Heldt,
et al., 2018 Blood pressure coefficient of variation and its association
with cardiac surgical outcomes. Anesthesia & Analgesia
127: 832–839.
- Jolliffe, I., 2005 Principal component analysis. Wiley Online Library.
Kim, J.-S., S. Park, P. Yan, B.W. Jeffers, and C. Cerezo, 2016 Effect
of inter-individual blood pressure variability on the progression
of atherosclerosis in carotid and coronary arteries: a post hoc
analysis of the normalise and prevent studies. European Heart
Journal-Cardiovascular Pharmacotherapy 3: 82–89.
- Krout, K. E. and A. D. Loewy, 2000 Periaqueductal gray matter
projections to midline and intralaminar thalamic nuclei of the
rat. Journal of Comparative Neurology 424: 111–141.
- Lang, A. E. and A. M. Lozano, 1998 Parkinson’s disease. New
England Journal of Medicine 339: 1130–1143.
- Mackey, M. C. and J. G. Milton, 1987 Dynamical diseases. Ann N Y
Acad Sci 504: 16–32.
- Mancia, G., R. Fagard, K. Narkiewicz, J. Redon, A. Zanchetti, et al.,
2013 2013 esh/esc guidelines for the management of arterial
hypertension: the task force for the management of arterial
hypertension of the european society of hypertension (esh) and
of the european society of cardiology (esc). Blood pressure 22:
193–278.
- Marcinkiewicz, M., R. Morcos, and M. Chretien, 1989 CNS connections
with the median raphe nucleus: Retrograde tracing with
wga-apohrp-gold complex in the rat. Journal of Comparative
Neurology 289: 11–35.
- Matanes, F., M. B. Khan, M. Siddiqui, T. Dudenbostel, D. Calhoun,
et al., 2022 An update on refractory hypertension. Current Hypertension
Reports 24: 225–234.
- McAfee, S. S., 2017 Assessing Neuronal Synchrony and Brain Function
Through Local Field Potential and Spike Analysis. Thesis.
Miles, J., 2005 R-squared, adjusted r-squared. Encyclopedia of
statistics in behavioral science .
- Mustafa, E. R., O. Istratoaie, and R. Musetescu, 2016 Blood pressure
variability and left ventricular mass in hypertensive patients.
Current health sciences journal 42: 47.
- Nazaraghaei, F. and K. K. Bhat, 2020 Physiological impacts of ajapajapa
yogic meditation on HRV index, RMSSD, PNN50, heart rate and
GSR following three-month training course in comparison to FG
meditation. Journal of Advanced Medical Sciences and Applied
Technologies 5.
- Newman, D., S. Hilleary, and C. Ginsberg, 1989 Nuclear terminations
of corticoreticular fiber systems in rats; pp. 253-264. Brain,
behavior and evolution 34: 253–264.
- Nogueira, M. L., D. M. Garner, F. M. Vanderlei, L. C. de Abreu,
and V. E. Valenti, 2017 Higuchi fractal dimension applied to
rr intervals during exposure to musical auditory stimulation.
Indian J Physiol Pharmacol 61: 211–218.
- O’Callaghan, E. L., E. C. Hart, H. Sims-Williams, S. Javed, A. E.
Burchell, et al., 2017 Chronic deep brain stimulation decreases
blood pressure and sympathetic nerve activity in a drug-and
device-resistant hypertensive patient. Hypertension 69: 522–528.
- Osipov, V. and E. Ponizovskaya, 2000 Stochastic resonance in the
brusselator model. Phys.Rev.E.Stat.Phys.Plasmas.Fluids Relat
Interdiscip.Topics. 61: 4603–4605.
- Packiasabapathy, S., V. Prasad, V. Rangasamy, D. Popok, X. Xu,
et al., 2020 Cardiac surgical outcome prediction by blood pressure
variability indices poincare plot and coefficient of variation:
a retrospective study. BMC anesthesiology 20: 1–12.
- Palatini, P., 2018 Risk of developing foot ulcers in diabetes: contribution
of high visit-to-visit blood pressure variability. Journal of
hypertension 36: 2132–2134.
- Parati, G., G. Bilo, and M. Valentini, 2008 Blood pressure vari-ability: methodological aspects, pathophysiological and clinical implications. Manual of Hypertension of the European Society of Hypertension p. 61.
- Parati, G., J. E. Ochoa, and G. Bilo, 2012 Blood pressure variability,
cardiovascular risk, and risk for renal disease progression.
Current hypertension reports 14: 421–431.
- Parati, G., J. E. Ochoa, C. Lombardi, and G. Bilo, 2013 Assessment
and management of blood-pressure variability. Nature Reviews
Cardiology 10: 143–155.
- Parati, G., G. S. Stergiou, E. Dolan, and G. Bilo, 2018 Blood pressure
variability: clinical relevance and application. The Journal of
Clinical Hypertension 20: 1133–1137.
- Patel, N., S. Javed, S. Khan, M. Papouchado, A. Malizia, et al.,
2011 Deep brain stimulation relieves refractory hypertension.
Neurology 76: 405–407.
- Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger, 1995
Quantification of scaling exponents and crossover phenomena
in nonstationary heartbeat time series. Chaos 5: 82–7.
- Percival, D. and A.Walden, 1993 Spectral Analysis for Physical Applications:
Multitaper and Conventional Univariate Techniques. Cambridge
University Press, New York.
- Pezard, L., J.-L. Nandrino, B. Renault, F. El Massioui, J.-F. Allilaire,
et al., 1996 Depression as a dynamical disease. Biological Psychiatry
39: 991–999.
- Pierce, D. A. and D. W. Schafer, 1986 Residuals in generalized
linear models. Journal of the American Statistical Association 81:
977–986.
- Pincus, S., 1995 Approximate entropy (apen) as a complexity measure.
Chaos: An Interdisciplinary Journal of Nonlinear Science
5: 110–117.
- Ploner, M., C. Sorg, and J. Gross, 2017 Brain rhythms of pain.
Trends in cognitive sciences 21: 100–110.
- Prigogine, I., 1962 Non-equilibrium statistical mechanics.. New York:
Interscience.
- Rangasamy, V., T. S. Henriques, X. Xu, and B. Subramaniam, 2020
Preoperative blood pressure complexity indices as a marker
for frailty in patients undergoing cardiac surgery. Journal of
cardiothoracic and vascular anesthesia 34: 616–621.
- Richman, J. S. and J. R. Moorman, 2000 Physiological time-series
analysis using approximate entropy and sample entropy. Am J
Physiol Heart Circ Physiol 278: H2039–49.
- Rothwell, P. M., S. C. Howard, E. Dolan, E. O’Brien, J. E. Dobson,
et al., 2010 Effects of beta-blockers and calcium-channel blockers
on within-individual variability in blood pressure and risk of
stroke. The Lancet Neurology 9: 469–480.
- Schmitt, L., J. Regnard, and G. P. Millet, 2015 Monitoring fatigue
status with HRV measures in elite athletes: an avenue beyond
RMSSD. Frontiers in physiology 6: 343.
- Shannon, C. E., 2001 A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications
Review 5: 3–55.
- Silke, B., M. A. Frais, K. A. Midtbo, S. P. Verma, S. Sharma, et al.,
1987 Comparative hemodynamic dose-response effects of five
slow calcium channel-blocking agents in coronary artery disease.
Clin Pharmacol Ther 42: 381–7.
- Slepian, S., 1978 Prolate spheroidal wave functions, fourier analysis
and uncertainty, v, the discrete case. Bell Syst Tech J 57: 1371–
1430.
- Spallone, V., 2018 Blood pressure variability and autonomic dysfunction.
Current Diabetes Reports 18: 137.
- Srinivasan, V., N. Udayakumar, H. Liang, and K. Anandan, 2022
A hybrid approach for analysis of brain lateralisation in autistic
children using graph theory techniques and deep belief networks.
International Journal of Biomedical Engineering and
Technology 39: 40–64.
- Stoco-Oliveira, M. C., A. L. Ricci-Vitor, L. M. Vanzella, H. B. Valente,
V. E. d. S. Silva, et al., 2021 Parkinson’s disease effect on
autonomic modulation: an analysis using geometric indices.
Arquivos de Neuro-Psiquiatria 79: 114–121.
- Subasi, A., 2007 Selection of optimal AR spectral estimation method
for eeg signals using cramer-rao bound. Comput.Biol.Med. 37:
183–194.
- Thomson, D. J., 1982 Spectrum estimation and harmonic analysis.
Proceedings of the IEEE 70: 1055–1096.
- Tuchler, M., A. C. Singer, and R. Koetter, 2002 Minimum mean
squared error equalization using a priori information. IEEE
Transactions on Signal processing 50: 673–683.
- Vautard, R., P. Yiou, and M. Ghil, 1992 Singular-spectrum analysis
- a toolkit for short, noisy chaotic signals. Physica D 58: 95–126.
- Voss, A., V. Baier, S. Schulz, and K. J. Bar, 2006 Linear and nonlinear
methods for analyses of cardiovascular variability in bipolar
disorders. Bipolar Disord 8: 441–52.
- Wajnsztejn, R., T. D. De Carvalho, D. M. Garner, L. C. M. Vanderlei,
M. F. Godoy, et al., 2016 Heart rate variability analysis by chaotic
global techniques in children with attention deficit hyperactivity
disorder. Complexity 21: 412–419.
- Wang, Z. and A. C. Bovik, 2009 Mean squared error: Love it or
leave it: a new look at signal fidelity measures. IEEE signal
processing magazine 26: 98–117.
- Webb, A. J., A. Lawson, K. Wartolowska, S. Mazzucco, and P. M.
Rothwell, 2021 Progression of beat-to-beat blood pressure variability
despite best medical management. Hypertension 77: 193–
201.
- Whitmer, D., C. de Solages, B. C. Hill, H. Yu, and
H. Bronte-Stewart, 2013 Resting beta hypersynchrony in secondary
dystonia and its suppression during pallidal deep brain
stimulation in DYT3+ l ubag dystonia. Neuromodulation: Technology
at the Neural Interface 16: 200–205.
- Zhou, T. L., R. M. Henry, C. D. Stehouwer, T. T. van Sloten, K. D.
Reesink, et al., 2018 Blood pressure variability, arterial stiffness,
and arterial remodeling: The maastricht study. Hypertension 72:
1002–1010.