In recent years, there has been a significant surge in interest in studies related to fractional calculus and its applications. Fractional-order analysis holds the potential to enhance the dynamic structure of chaotic systems. This study focuses on the dynamic analysis of the Chen system with low fractional-order values and its fractional-order electronic circuit. Notably, there is a lack of studies about chaotic electronic circuits in the literature with a fractional-order parameter value equal to 0.8, which makes this study pioneering in this regard. Moreover, various numerical analyses are presented to investigate the system's dynamic characteristics and complexity, such as chaotic phase planes and bifurcation diagrams. As anticipated, the voltage outputs obtained from PSpice simulations demonstrated good agreement with the numerical analysis.
Ahmad, W. M. and J. C. Sprott, 2003 Chaos in fractional-order
autonomous nonlinear systems. Chaos, Solitons & Fractals 16:
339–351.
Altun, K., 2021a Fpaa implementations of fractional-order chaotic
systems. Journal of Circuits, Systems and Computers 30:
2150271.
Altun, K., 2021b Kesir dereceli sprott-k kaotik sisteminin dinamik
analizi ve fpga uygulaması. Avrupa Bilim ve Teknoloji Dergisi
pp. 392–399.
Altun, K., 2022 Multi-scroll attractors with hyperchaotic behavior
using fractional-order systems. Journal of Circuits, Systems and
Computers 31: 2250085.
Chen, D., C.Wu, H. H. Iu, and X. Ma, 2013 Circuit simulation for
synchronization of a fractional-order and integer-order chaotic
system. Nonlinear Dynamics 73: 1671–1686.
Chen, G. and T. Ueta, 1999 Yet another chaotic attractor. International
Journal of Bifurcation and chaos 9: 1465–1466.
Dang, H. G., 2014a Adaptive synchronization of the fractionalorder
sprott n system. Advanced Materials Research 850: 872–
875.
Dang, H. G., 2014b Dynamics and synchronization of the fractionalorder
sprott e system. Advanced Materials Research 850: 876–
879.
Du, M., Z. Wang, and H. Hu, 2013 Measuring memory with the
order of fractional derivative. Scientific reports 3: 3431.
Garrappa, R., 2018 Numerical solution of fractional differential
equations: A survey and a software tutorial. Mathematics 6: 16.
Gokyildirim, A., 2023 Circuit realization of the fractional-order
sprott k chaotic system with standard components. Fractal and
Fractional 7: 470.
Gokyildirim, A., H. Calgan, and M. Demirtas, 2023 Fractionalorder
sliding mode control of a 4d memristive chaotic system.
Journal of Vibration and Control p. 10775463231166187.
Hosny, K. M., S. T. Kamal, and M. M. Darwish, 2022 Novel encryption
for color images using fractional-order hyperchaotic system.
Journal of Ambient Intelligence and Humanized Computing 13:
973–988.
Li, C. and G. Peng, 2004 Chaos in chen’s system with a fractional
order. Chaos, Solitons & Fractals 22: 443–450.
Li, H., Y. Shen, Y. Han, J. Dong, and J. Li, 2023 Determining lyapunov
exponents of fractional-order systems: A general method
based on memory principle. Chaos, Solitons & Fractals 168:
113167.
Li, X., Z. Li, and Z. Wen, 2020 One-to-four-wing hyperchaotic
fractional-order system and its circuit realization. Circuit World
46: 107–115.
Liu, T., H. Yan, S. Banerjee, and J. Mou, 2021 A fractional-order
chaotic system with hidden attractor and self-excited attractor
and its dsp implementation. Chaos, Solitons & Fractals 145:
110791.
Lu, J. G. and G. Chen, 2006 A note on the fractional-order chen
system. Chaos, Solitons & Fractals 27: 685–688.
Nuñez-Perez, J.-C., V.-A. Adeyemi, Y. Sandoval-Ibarra, F.-J. Perez-
Pinal, and E. Tlelo-Cuautle, 2021 Maximizing the chaotic behavior
of fractional order chen system by evolutionary algorithms.
Mathematics 9: 1194.
Özkaynak, F., V. Çelik, and A. B. Özer, 2017 A new s-box construction
method based on the fractional-order chaotic chen system.
Signal, Image and Video Processing 11: 659–664.
Pham, V.-T., S. T. Kingni, C. Volos, S. Jafari, and T. Kapitaniak,
2017 A simple three-dimensional fractional-order chaotic system
without equilibrium: Dynamics, circuitry implementation,
chaos control and synchronization. AEU-international Journal
of Electronics and Communications 78: 220–227.
Podlubny, I., 1999 Fractional differential equations, mathematics
in science and engineering.
Silva-Juárez, A., E. Tlelo-Cuautle, L. G. De La Fraga, and R. Li, 2020
Fpaa-based implementation of fractional-order chaotic oscillators
using first-order active filter blocks. Journal of advanced
research 25: 77–85.
Sprott, J. C., 1994 Some simple chaotic flows. Physical review E 50:
R647.
Tepljakov, A. and A. Tepljakov, 2017 Fomcon: fractional-order
modeling and control toolbox. Fractional-order modeling and
control of dynamic systems pp. 107–129.
Valerio, D. and J. S. Da Costa, 2004 Ninteger: a non-integer control
toolbox for matlab. Proceedings of fractional differentiation and
its applications, Bordeaux .
Wang, B., L. Li, and Y.Wang, 2020 An efficient nonstandard finite
difference scheme for chaotic fractional-order chen system. IEEE
Access 8: 98410–98421.
Wang, J., L. Xiao, K. Rajagopal, A. Akgul, S. Cicek, et al., 2021
Fractional-order analysis of modified chua’s circuit system with
the smooth degree of 3 and its microcontroller-based implementation
with analog circuit design. Symmetry 13: 340.
Yang, F. and X. Wang, 2021 Dynamic characteristic of a new
fractional-order chaotic system based on the hopfield neural
network and its digital circuit implementation. Physica Scripta
96: 035218.
Yao, J., K. Wang, P. Huang, L. Chen, and J. T. Machado, 2020
Analysis and implementation of fractional-order chaotic system
with standard components. Journal of Advanced Research 25:
97–109.
Zouad, F., K. Kemih, and H. Hamiche, 2019 A new secure communication
scheme using fractional order delayed chaotic system:
design and electronics circuit simulation. Analog Integrated Circuits
and Signal Processing 99: 619–632.
Year 2023,
Volume: 5 Issue: 2, 127 - 132, 31.07.2023
Ahmad, W. M. and J. C. Sprott, 2003 Chaos in fractional-order
autonomous nonlinear systems. Chaos, Solitons & Fractals 16:
339–351.
Altun, K., 2021a Fpaa implementations of fractional-order chaotic
systems. Journal of Circuits, Systems and Computers 30:
2150271.
Altun, K., 2021b Kesir dereceli sprott-k kaotik sisteminin dinamik
analizi ve fpga uygulaması. Avrupa Bilim ve Teknoloji Dergisi
pp. 392–399.
Altun, K., 2022 Multi-scroll attractors with hyperchaotic behavior
using fractional-order systems. Journal of Circuits, Systems and
Computers 31: 2250085.
Chen, D., C.Wu, H. H. Iu, and X. Ma, 2013 Circuit simulation for
synchronization of a fractional-order and integer-order chaotic
system. Nonlinear Dynamics 73: 1671–1686.
Chen, G. and T. Ueta, 1999 Yet another chaotic attractor. International
Journal of Bifurcation and chaos 9: 1465–1466.
Dang, H. G., 2014a Adaptive synchronization of the fractionalorder
sprott n system. Advanced Materials Research 850: 872–
875.
Dang, H. G., 2014b Dynamics and synchronization of the fractionalorder
sprott e system. Advanced Materials Research 850: 876–
879.
Du, M., Z. Wang, and H. Hu, 2013 Measuring memory with the
order of fractional derivative. Scientific reports 3: 3431.
Garrappa, R., 2018 Numerical solution of fractional differential
equations: A survey and a software tutorial. Mathematics 6: 16.
Gokyildirim, A., 2023 Circuit realization of the fractional-order
sprott k chaotic system with standard components. Fractal and
Fractional 7: 470.
Gokyildirim, A., H. Calgan, and M. Demirtas, 2023 Fractionalorder
sliding mode control of a 4d memristive chaotic system.
Journal of Vibration and Control p. 10775463231166187.
Hosny, K. M., S. T. Kamal, and M. M. Darwish, 2022 Novel encryption
for color images using fractional-order hyperchaotic system.
Journal of Ambient Intelligence and Humanized Computing 13:
973–988.
Li, C. and G. Peng, 2004 Chaos in chen’s system with a fractional
order. Chaos, Solitons & Fractals 22: 443–450.
Li, H., Y. Shen, Y. Han, J. Dong, and J. Li, 2023 Determining lyapunov
exponents of fractional-order systems: A general method
based on memory principle. Chaos, Solitons & Fractals 168:
113167.
Li, X., Z. Li, and Z. Wen, 2020 One-to-four-wing hyperchaotic
fractional-order system and its circuit realization. Circuit World
46: 107–115.
Liu, T., H. Yan, S. Banerjee, and J. Mou, 2021 A fractional-order
chaotic system with hidden attractor and self-excited attractor
and its dsp implementation. Chaos, Solitons & Fractals 145:
110791.
Lu, J. G. and G. Chen, 2006 A note on the fractional-order chen
system. Chaos, Solitons & Fractals 27: 685–688.
Nuñez-Perez, J.-C., V.-A. Adeyemi, Y. Sandoval-Ibarra, F.-J. Perez-
Pinal, and E. Tlelo-Cuautle, 2021 Maximizing the chaotic behavior
of fractional order chen system by evolutionary algorithms.
Mathematics 9: 1194.
Özkaynak, F., V. Çelik, and A. B. Özer, 2017 A new s-box construction
method based on the fractional-order chaotic chen system.
Signal, Image and Video Processing 11: 659–664.
Pham, V.-T., S. T. Kingni, C. Volos, S. Jafari, and T. Kapitaniak,
2017 A simple three-dimensional fractional-order chaotic system
without equilibrium: Dynamics, circuitry implementation,
chaos control and synchronization. AEU-international Journal
of Electronics and Communications 78: 220–227.
Podlubny, I., 1999 Fractional differential equations, mathematics
in science and engineering.
Silva-Juárez, A., E. Tlelo-Cuautle, L. G. De La Fraga, and R. Li, 2020
Fpaa-based implementation of fractional-order chaotic oscillators
using first-order active filter blocks. Journal of advanced
research 25: 77–85.
Sprott, J. C., 1994 Some simple chaotic flows. Physical review E 50:
R647.
Tepljakov, A. and A. Tepljakov, 2017 Fomcon: fractional-order
modeling and control toolbox. Fractional-order modeling and
control of dynamic systems pp. 107–129.
Valerio, D. and J. S. Da Costa, 2004 Ninteger: a non-integer control
toolbox for matlab. Proceedings of fractional differentiation and
its applications, Bordeaux .
Wang, B., L. Li, and Y.Wang, 2020 An efficient nonstandard finite
difference scheme for chaotic fractional-order chen system. IEEE
Access 8: 98410–98421.
Wang, J., L. Xiao, K. Rajagopal, A. Akgul, S. Cicek, et al., 2021
Fractional-order analysis of modified chua’s circuit system with
the smooth degree of 3 and its microcontroller-based implementation
with analog circuit design. Symmetry 13: 340.
Yang, F. and X. Wang, 2021 Dynamic characteristic of a new
fractional-order chaotic system based on the hopfield neural
network and its digital circuit implementation. Physica Scripta
96: 035218.
Yao, J., K. Wang, P. Huang, L. Chen, and J. T. Machado, 2020
Analysis and implementation of fractional-order chaotic system
with standard components. Journal of Advanced Research 25:
97–109.
Zouad, F., K. Kemih, and H. Hamiche, 2019 A new secure communication
scheme using fractional order delayed chaotic system:
design and electronics circuit simulation. Analog Integrated Circuits
and Signal Processing 99: 619–632.
Gökyıldırım, A. (2023). Dynamical Analysis and Electronic Circuit Implementation of Fractional-order Chen System. Chaos Theory and Applications, 5(2), 127-132. https://doi.org/10.51537/chaos.1326602