Editorial
BibTex RIS Cite

Are Chaotic Attractors just a Mathematical Curiosity or Do They Contribute to the Advancement of Science?

Year 2023, Volume: 5 Issue: 3, 133 - 140, 30.11.2023

Abstract

Since the seminal work of Henri Poincaré on the three-body problem, and more recent research dating back to the second half of the 20th century on chaotic dynamical systems, many applications have emerged in different domains (economics, electronic, cryptography, physics, etc). We try to describe the evolution of the last 50 years on the subject and to find out whether applications have compromised the purity and beauty of theoretical research.

References

  • Abdelouahab, M.- S., Lozi, R., and Chua, L. O., 2008 Memfractance: A mathematical paradigm for circuit elements with memory. Int. J. Bifurc. Chaos 24: 1430023.
  • Araujo, E. and L. S. Coelho, 2008 Particle swarm approaches using lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Applied Soft Computing 8: 1354–1364.
  • Belykh, V. N., Barabash, N. V., and Grechko, D. A. , 2023 Existence proofs for strange attractors in piecewise-smooth nonlinear lozihénon and belykh maps. Journal of Difference Equations and Applications pp. 1–21.
  • Caponetto, R., Fortuna, L., Fazzino, S., and Xibilia, M. G., 2003 Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7: 289–304.
  • Chua, L. O., 1971 Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. IEEE Trans. Circuit Th. 18: 507–519.
  • Commendatore, P., Kubin, I., and Sushko, I., 2015 Typical bifurcation scenario in a three region symmetric new economic geography model. Mathematics and Computers in Simulation 108: 63–80.
  • Davendra, D., Zelinka, I., and Senkerik, R., 2010 Chaos driven evolutionary algorithms for the task of pid control. Computers and Mathematics with Applications 60: 1088–1104.
  • Dmitriev, A .S., Panas, A. I., and Starkov, S. O., 2000 Multiple access communication based on control of special chaotic trajectories. Proceedings of 2nd International Conference. Control of Oscillations and Chaos(COC-2000), St. Petersburg, Russia 3: 518–522.
  • El Assad, S., Lozi, R., and Puech, W., 2022 Special Issue "Cryptography and Its Applications in Information Security". Applied Science, MDPI,.
  • Garasym, O., Lozi, J. P., and Lozi, R., 2017 How useful randomness for cryptography can emerge from multicore-implemented complex networks of chaotic maps. Journal of difference equations and applications 23: 821–859.
  • Harmer, G. P., Abbott, D., Taylor, P. G., and Parrondo J. M. R., 2001 Brownian ratchets and parrondo’s games. Chaos 11: 705A–714.
  • Heath, T. L., 1931 A Manual of Greek Mathematics. Oxford University Press, Oxford.
  • Høyrup J., 2011 Mesopotamian calculation: Background and contrast to greek mathematics. Contribution to IX Congresso della Società Italiana di Storia della Matematica, Genova, 17–19 novembre .
  • Li, T. Y. and Yorke, J. A. , 1975 Period three implies chaos. The American Mathematical Monthly 82: 985–992.
  • Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20: 130–141.
  • Lozi, R., 1995 Secure communications via chaotic synchronization in chua’s circuit and bonhoeffer-van der pol equation: numerical analysis of the errors of the recovered signal. IEEE international Symposium on circuits and systems 1: 684–687.
  • Lozi, R., 2023 Algorithms using the chaotic lozi map for real applications or for applications exploring some new mathematical fields: a survey. Algorithms, To appear pp. 1319–1325.
  • Lozi, R. and Chua, L. O., 1993 Secure communications via chaotic synchronization ii: noise reduction by cascading two identical receivers. International Journal of Bifurcation and Chaos 3: 1319– 1325.
  • Mandelbrot, B., 1967 How long is the coast of britain? statistical self-similarity and fractional dimension. Science, New Series 156: 1088–1104.
  • Marinke, R., Araujo, J. E., Coelho, L. S., and Matko, I., 2005 Particle swarm optimization (pso) applied to fuzzy modeling in a thermal-vacuum system. Proceedings of the 5th International Conference on Hybrid Intelligent Systems, Rio de Janeiro, Brazil pp. 67–72.
  • Pecora, L. M. and Carroll, T. L., 1990 Synchronization in chaotic systems. Phys. Rev. Lett. 64: 821.
  • Peitgen, H.-O. and Richter, P. H., 2011 The Beauty of Fractals: Images of Complex Dynamical Systems. Springer Verlag, Berlin. Pluhacek, M., Senkerik, R., Davendra, D., and Zelinka, I., 2012
  • Designing pid controller for dc motor system by means of enhaced pso algorithm with discrete lozi map. Proceedings 26th European Conference on Modelling and Simulation,ECMS 2012, Troitzsch, K. G.; Möhring, M.; Lotzmann, U. (Eds) pp. 405–409.
  • Rodriguez-Vazquez, A., Huertas, J. L., Perez-Verdu, B., and Chua, L. O. , 1987 Chaos from switched-capacitor circuits: Discrete maps. Proceedings of the IEEE 75: 1090–1106.
  • Rössler, O. E., 1976 Chaotic behavior in simple reaction system. Zeitschrift für Naturforschung A 31: 259–264.
  • Rössler, O. E., 2020 On the Rossler Attractor. Chaos Theory and Applications 2: 1–2.
  • Rybalova, E., Semenova, N., and Anishchenko, V., 2018 Solitary state chimera: Appearance, structure, and synchronization. International Symposium on Nonlinear Theory and Its Applications NOLTA 2018, Tarragona, Spain pp. 601–604.
  • Senkerik, R., Davendra, D, Zelinka, I., Pluhacek, M., and Kominkova Oplatkova, Z., 2013 Chaos driven differential evolution with lozi map in the task of chemical reactor optimization. Lecture Notes in Computer Science 7895.
  • Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S., 2008 The missing memristor found. Nature 453: 80–83.
  • Su, Y. , Xu, T. , Li, T. , Zhao, J. , and Liu, S. , 2021 Optical color image encryption based on fingerprint key and phase-shifting digital holography. Optics and Lasers in Engineering 140: 106550.
  • Sushko, I. , Tramontana, F. , and Gardini, L. , 2023, in progress Optical color image encryption based on fingerprint key and phase-shifting digital holography. Working Papers Series in Economics, Mathematics and Statistics, University of Urbino .
  • Tang, T. W. , Allison, A., and Abbott, D. , 2004 Investigation of chaotic switching strategies in parrondo’s games. Fluctuation and Noise Letters 4: L585–L596.
  • Wang, J., Gu, Y., Rong, K., and Xu, Q.and Zhang, X., 2022 Memristor-based lozi map with hidden hyperchaos. Mathematics 10: 3426.
  • Zelinka, I., 2004 Self-organizing migrating algorithm. Studies in Fuzziness and Soft Computing 141: 167–217.
  • Zelinka, I., Kojecky, L., Lampart, M., Nowakova, M. J., and Plucar, J., 2023 isoma swarm intelligence algorithm in synthesis of quantum computing circuits. Applied Soft Computing 142: 110350.
  • Zhang, L. P., Wei, Z. C., Jiang, H. B., Lyu, W. P., and Bi, Q. S., 2022 Extremely hidden multistability in a class of a two dimensional maps with a cosine memristor. Chin. Phys. B 31: 100503.

Are chaotic attractors just a mathematical curiosity or do they contribute to the advancement of science?

Year 2023, Volume: 5 Issue: 3, 133 - 140, 30.11.2023

Abstract

Since the seminal work of Henri Poincaré on the three-body problem, and more recent research
dating back to the second half of the 20th century on chaotic dynamical systems, many applications have
emerged in different domains (economics, electronic, cryptograpy, physics, etc). We try to describe the
evolution of the last 50 years on the subject and to find out whether applications have compromised the purity
and beauty of theoretical research.

References

  • Abdelouahab, M.- S., Lozi, R., and Chua, L. O., 2008 Memfractance: A mathematical paradigm for circuit elements with memory. Int. J. Bifurc. Chaos 24: 1430023.
  • Araujo, E. and L. S. Coelho, 2008 Particle swarm approaches using lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Applied Soft Computing 8: 1354–1364.
  • Belykh, V. N., Barabash, N. V., and Grechko, D. A. , 2023 Existence proofs for strange attractors in piecewise-smooth nonlinear lozihénon and belykh maps. Journal of Difference Equations and Applications pp. 1–21.
  • Caponetto, R., Fortuna, L., Fazzino, S., and Xibilia, M. G., 2003 Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7: 289–304.
  • Chua, L. O., 1971 Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. IEEE Trans. Circuit Th. 18: 507–519.
  • Commendatore, P., Kubin, I., and Sushko, I., 2015 Typical bifurcation scenario in a three region symmetric new economic geography model. Mathematics and Computers in Simulation 108: 63–80.
  • Davendra, D., Zelinka, I., and Senkerik, R., 2010 Chaos driven evolutionary algorithms for the task of pid control. Computers and Mathematics with Applications 60: 1088–1104.
  • Dmitriev, A .S., Panas, A. I., and Starkov, S. O., 2000 Multiple access communication based on control of special chaotic trajectories. Proceedings of 2nd International Conference. Control of Oscillations and Chaos(COC-2000), St. Petersburg, Russia 3: 518–522.
  • El Assad, S., Lozi, R., and Puech, W., 2022 Special Issue "Cryptography and Its Applications in Information Security". Applied Science, MDPI,.
  • Garasym, O., Lozi, J. P., and Lozi, R., 2017 How useful randomness for cryptography can emerge from multicore-implemented complex networks of chaotic maps. Journal of difference equations and applications 23: 821–859.
  • Harmer, G. P., Abbott, D., Taylor, P. G., and Parrondo J. M. R., 2001 Brownian ratchets and parrondo’s games. Chaos 11: 705A–714.
  • Heath, T. L., 1931 A Manual of Greek Mathematics. Oxford University Press, Oxford.
  • Høyrup J., 2011 Mesopotamian calculation: Background and contrast to greek mathematics. Contribution to IX Congresso della Società Italiana di Storia della Matematica, Genova, 17–19 novembre .
  • Li, T. Y. and Yorke, J. A. , 1975 Period three implies chaos. The American Mathematical Monthly 82: 985–992.
  • Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20: 130–141.
  • Lozi, R., 1995 Secure communications via chaotic synchronization in chua’s circuit and bonhoeffer-van der pol equation: numerical analysis of the errors of the recovered signal. IEEE international Symposium on circuits and systems 1: 684–687.
  • Lozi, R., 2023 Algorithms using the chaotic lozi map for real applications or for applications exploring some new mathematical fields: a survey. Algorithms, To appear pp. 1319–1325.
  • Lozi, R. and Chua, L. O., 1993 Secure communications via chaotic synchronization ii: noise reduction by cascading two identical receivers. International Journal of Bifurcation and Chaos 3: 1319– 1325.
  • Mandelbrot, B., 1967 How long is the coast of britain? statistical self-similarity and fractional dimension. Science, New Series 156: 1088–1104.
  • Marinke, R., Araujo, J. E., Coelho, L. S., and Matko, I., 2005 Particle swarm optimization (pso) applied to fuzzy modeling in a thermal-vacuum system. Proceedings of the 5th International Conference on Hybrid Intelligent Systems, Rio de Janeiro, Brazil pp. 67–72.
  • Pecora, L. M. and Carroll, T. L., 1990 Synchronization in chaotic systems. Phys. Rev. Lett. 64: 821.
  • Peitgen, H.-O. and Richter, P. H., 2011 The Beauty of Fractals: Images of Complex Dynamical Systems. Springer Verlag, Berlin. Pluhacek, M., Senkerik, R., Davendra, D., and Zelinka, I., 2012
  • Designing pid controller for dc motor system by means of enhaced pso algorithm with discrete lozi map. Proceedings 26th European Conference on Modelling and Simulation,ECMS 2012, Troitzsch, K. G.; Möhring, M.; Lotzmann, U. (Eds) pp. 405–409.
  • Rodriguez-Vazquez, A., Huertas, J. L., Perez-Verdu, B., and Chua, L. O. , 1987 Chaos from switched-capacitor circuits: Discrete maps. Proceedings of the IEEE 75: 1090–1106.
  • Rössler, O. E., 1976 Chaotic behavior in simple reaction system. Zeitschrift für Naturforschung A 31: 259–264.
  • Rössler, O. E., 2020 On the Rossler Attractor. Chaos Theory and Applications 2: 1–2.
  • Rybalova, E., Semenova, N., and Anishchenko, V., 2018 Solitary state chimera: Appearance, structure, and synchronization. International Symposium on Nonlinear Theory and Its Applications NOLTA 2018, Tarragona, Spain pp. 601–604.
  • Senkerik, R., Davendra, D, Zelinka, I., Pluhacek, M., and Kominkova Oplatkova, Z., 2013 Chaos driven differential evolution with lozi map in the task of chemical reactor optimization. Lecture Notes in Computer Science 7895.
  • Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S., 2008 The missing memristor found. Nature 453: 80–83.
  • Su, Y. , Xu, T. , Li, T. , Zhao, J. , and Liu, S. , 2021 Optical color image encryption based on fingerprint key and phase-shifting digital holography. Optics and Lasers in Engineering 140: 106550.
  • Sushko, I. , Tramontana, F. , and Gardini, L. , 2023, in progress Optical color image encryption based on fingerprint key and phase-shifting digital holography. Working Papers Series in Economics, Mathematics and Statistics, University of Urbino .
  • Tang, T. W. , Allison, A., and Abbott, D. , 2004 Investigation of chaotic switching strategies in parrondo’s games. Fluctuation and Noise Letters 4: L585–L596.
  • Wang, J., Gu, Y., Rong, K., and Xu, Q.and Zhang, X., 2022 Memristor-based lozi map with hidden hyperchaos. Mathematics 10: 3426.
  • Zelinka, I., 2004 Self-organizing migrating algorithm. Studies in Fuzziness and Soft Computing 141: 167–217.
  • Zelinka, I., Kojecky, L., Lampart, M., Nowakova, M. J., and Plucar, J., 2023 isoma swarm intelligence algorithm in synthesis of quantum computing circuits. Applied Soft Computing 142: 110350.
  • Zhang, L. P., Wei, Z. C., Jiang, H. B., Lyu, W. P., and Bi, Q. S., 2022 Extremely hidden multistability in a class of a two dimensional maps with a cosine memristor. Chin. Phys. B 31: 100503.
There are 36 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Editorial
Authors

René Lozı 0000-0003-0451-4255

Publication Date November 30, 2023
Published in Issue Year 2023 Volume: 5 Issue: 3

Cite

APA Lozı, R. (2023). Are Chaotic Attractors just a Mathematical Curiosity or Do They Contribute to the Advancement of Science?. Chaos Theory and Applications, 5(3), 133-140.

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg