Research Article
BibTex RIS Cite

Fractalization of Fractional Integral and Composition of Fractal Splines

Year 2023, Volume: 5 Issue: 4, 318 - 325, 31.12.2023
https://doi.org/10.51537/chaos.1334407

Abstract

The present study perturbs the fractional integral of a continuous function $f$ defined on a real compact interval, say $(\mathcal{I}^vf)$ using a family of fractal functions $(\mathcal{I}^vf)^\alpha$ based on the scaling parameter $\alpha$. To elicit this phenomenon, a fractal operator is proposed in the space of continuous functions, an analogue to the existing fractal interpolation operator which perturbs $f$ giving rise to $\alpha$-fractal function $f^\alpha$. In addition, the composition of $\alpha$-fractal function with the linear fractal function is discussed and the composition operation on the fractal interpolation functions is extended to the case of differentiable fractal functions.

References

  • Agathiyan, A., A. Gowrisankar, and T. Priyanka, 2022 Construction of new fractal interpolation functions through integration method. Results in Mathematics 77: 122.
  • Akhtar, M. N., M. Prasad, and M. Navascués, 2016 Box dimensions of α-fractal functions. Fractals 24: 1650037.
  • Akhtar, M. N., M. Prasad, and M. Navascués, 2017 Box dimension of α-fractal function with variable scaling factors in subintervals. Chaos, Solitons & Fractals 103: 440–449.
  • Balasubramani, N., M. Prasad, and S. Natesan, 2020 Shape preserving α-fractal rational cubic splines. Calcolo 57: 21.
  • Banerjee, A., M. N. Akhtar, and M. Navascués, 2023 Local α-fractal interpolation function. The European Physical Journal Special Topics pp. 1–8.
  • Banerjee, S., D. Easwaramoorthy, and A. Gowrisankar, 2021 Fractal Functions, Dimensions and Signal Analysis. Springer, Cham.
  • Barnsley, M., 1986 Fractal functions and interpolation. Constructive Approximation 2: 303–329.
  • Barnsley, M. and A. Harrington, 1989 The calculus of fractal interpolation functions. Journal of Approximation Theory 57: 14–34.
  • Çimen, M., Z. Garip, O. Boyraz, I. Pehlivan, M. Yildiz, et al., 2020 An interface design for calculation of fractal dimension. Chaos Theory and Applications 2: 3–9.
  • Dai, Z. and S. Liu, 2023 Construction and box dimension of the composite fractal interpolation function. Chaos, Solitons & Fractals 169: 113255.
  • Falconer, K., 2004 Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons.
  • Fortin, C., R. Kumaresan, W. Ohley, and S. Hoefer, 1992 Fractal dimension in the analysis of medical images. IEEE Engineering in Medicine and Biology Magazine 11: 65–71.
  • Gowrisankar, A. and M. Prasad, 2019 Riemann-Liouville calculus on quadratic fractal interpolation function with variable scaling factors. The Journal of Analysis 27: 347–363.
  • Gowrisankar, A. and R. Uthayakumar, 2016 Fractional calculus on fractal interpolation for a sequence of data with countable iterated function system. Mediterranean Journal of Mathematics 13: 3887–3906.
  • Massopust, P., 2022a Fractal interpolation: From global to local, to nonstationary and quaternionic. Frontiers of Fractal Analysis. Recent Advances and Challenges; CRC Press: Boca Raton, FL, USA pp. 25–49.
  • Massopust, P., 2022b Fractal interpolation over nonlinear partitions. Chaos, Solitons & Fractals 162: 112503.
  • Navascués, M., 2005 Fractal polynomial interpolation. Zeitschrift fur Analysis und ihre Anwendung 24: 401–418.
  • Navascués, M., 2010 Fractal approximation. Complex Analysis and Operator Theory 4: 953–974.
  • Navascués, M., C. Pacurar, and V. Drakopoulos, 2022 Scale-free fractal interpolation. Fractal and Fractional 6: 602.
  • Navascués, M. and M. Sebastián, 2006 Smooth fractal interpolation. Journal of Inequalities and Applications 2006: 1–20.
  • Pan, X., 2014 Fractional calculus of fractal interpolation function on [0, b](b > 0). In Abstract and Applied Analysis 2014.
  • Priyanka, T. and A. Gowrisankar, 2021a Analysis on weylmarchaud fractional derivative for types of fractal interpolation function with fractal dimension. Fractals 29: 2150215.
  • Priyanka, T. and A. Gowrisankar, 2021b Riemann-Liouville fractional integral of non-affine fractal interpolation function and its fractional operator. The European Physical Journal Special Topics 230: 37889–3805.
  • Ruan, H.-J., W.-Y. Su, and K. Yao, 2009 Box dimension and fractional integral of linear fractal interpolation functions. Journal of Approximation Theory 161: 187–197.
  • Samko, S., A. Kilbas, and O. Marichev, 1993 Fractional integrals and derivatives.
  • Sanjuán, M. A., 2021 Unpredictability, uncertainty and fractal structures in physics.
Year 2023, Volume: 5 Issue: 4, 318 - 325, 31.12.2023
https://doi.org/10.51537/chaos.1334407

Abstract

References

  • Agathiyan, A., A. Gowrisankar, and T. Priyanka, 2022 Construction of new fractal interpolation functions through integration method. Results in Mathematics 77: 122.
  • Akhtar, M. N., M. Prasad, and M. Navascués, 2016 Box dimensions of α-fractal functions. Fractals 24: 1650037.
  • Akhtar, M. N., M. Prasad, and M. Navascués, 2017 Box dimension of α-fractal function with variable scaling factors in subintervals. Chaos, Solitons & Fractals 103: 440–449.
  • Balasubramani, N., M. Prasad, and S. Natesan, 2020 Shape preserving α-fractal rational cubic splines. Calcolo 57: 21.
  • Banerjee, A., M. N. Akhtar, and M. Navascués, 2023 Local α-fractal interpolation function. The European Physical Journal Special Topics pp. 1–8.
  • Banerjee, S., D. Easwaramoorthy, and A. Gowrisankar, 2021 Fractal Functions, Dimensions and Signal Analysis. Springer, Cham.
  • Barnsley, M., 1986 Fractal functions and interpolation. Constructive Approximation 2: 303–329.
  • Barnsley, M. and A. Harrington, 1989 The calculus of fractal interpolation functions. Journal of Approximation Theory 57: 14–34.
  • Çimen, M., Z. Garip, O. Boyraz, I. Pehlivan, M. Yildiz, et al., 2020 An interface design for calculation of fractal dimension. Chaos Theory and Applications 2: 3–9.
  • Dai, Z. and S. Liu, 2023 Construction and box dimension of the composite fractal interpolation function. Chaos, Solitons & Fractals 169: 113255.
  • Falconer, K., 2004 Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons.
  • Fortin, C., R. Kumaresan, W. Ohley, and S. Hoefer, 1992 Fractal dimension in the analysis of medical images. IEEE Engineering in Medicine and Biology Magazine 11: 65–71.
  • Gowrisankar, A. and M. Prasad, 2019 Riemann-Liouville calculus on quadratic fractal interpolation function with variable scaling factors. The Journal of Analysis 27: 347–363.
  • Gowrisankar, A. and R. Uthayakumar, 2016 Fractional calculus on fractal interpolation for a sequence of data with countable iterated function system. Mediterranean Journal of Mathematics 13: 3887–3906.
  • Massopust, P., 2022a Fractal interpolation: From global to local, to nonstationary and quaternionic. Frontiers of Fractal Analysis. Recent Advances and Challenges; CRC Press: Boca Raton, FL, USA pp. 25–49.
  • Massopust, P., 2022b Fractal interpolation over nonlinear partitions. Chaos, Solitons & Fractals 162: 112503.
  • Navascués, M., 2005 Fractal polynomial interpolation. Zeitschrift fur Analysis und ihre Anwendung 24: 401–418.
  • Navascués, M., 2010 Fractal approximation. Complex Analysis and Operator Theory 4: 953–974.
  • Navascués, M., C. Pacurar, and V. Drakopoulos, 2022 Scale-free fractal interpolation. Fractal and Fractional 6: 602.
  • Navascués, M. and M. Sebastián, 2006 Smooth fractal interpolation. Journal of Inequalities and Applications 2006: 1–20.
  • Pan, X., 2014 Fractional calculus of fractal interpolation function on [0, b](b > 0). In Abstract and Applied Analysis 2014.
  • Priyanka, T. and A. Gowrisankar, 2021a Analysis on weylmarchaud fractional derivative for types of fractal interpolation function with fractal dimension. Fractals 29: 2150215.
  • Priyanka, T. and A. Gowrisankar, 2021b Riemann-Liouville fractional integral of non-affine fractal interpolation function and its fractional operator. The European Physical Journal Special Topics 230: 37889–3805.
  • Ruan, H.-J., W.-Y. Su, and K. Yao, 2009 Box dimension and fractional integral of linear fractal interpolation functions. Journal of Approximation Theory 161: 187–197.
  • Samko, S., A. Kilbas, and O. Marichev, 1993 Fractional integrals and derivatives.
  • Sanjuán, M. A., 2021 Unpredictability, uncertainty and fractal structures in physics.
There are 26 citations in total.

Details

Primary Language English
Subjects Numerical Modelling and Mechanical Characterisation
Journal Section Research Articles
Authors

Gowrisankar Arulprakash 0000-0002-5093-2805

Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 5 Issue: 4

Cite

APA Arulprakash, G. (2023). Fractalization of Fractional Integral and Composition of Fractal Splines. Chaos Theory and Applications, 5(4), 318-325. https://doi.org/10.51537/chaos.1334407

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg