Predicting Tipping Points in a Family of PWL Systems: Detecting Multistability via Linear Operators Properties
Year 2024,
Volume: 6 Issue: 2, 73 - 82, 30.06.2024
J. L. Echenausía-monroy
,
Rıcardo Cuesta-garcía
,
Hector Gilardi-velázquez
,
Sishu Shankar Muni
,
Joaquin Alvarez-gallegos
Abstract
The study of dynamical systems is based on the solution of differential equations that may exhibit various behaviors, such as fixed points, limit cycles, periodic, quasi-periodic attractors, chaotic behavior, and coexistence of attractors, to name a few. In this paper, we present a simple and novel method for predicting the occurrence of tipping points in a family of Piece-Wise Linear systems (PWL) that exhibit a transition from monostability to multistability with the variation of a single parameter, without the need to compute time series, i.e., without solving the differential equations of the system. The linearized system of the model is analyzed, the stable and unstable manifolds are taken to be real vectors in space, and the changes suffered by these vectors as a result of the modification of the parameter are examined using such simple metrics as the magnitude of a vector or the angle between two vectors in space. The results obtained with the linear analysis of the system agree well with those obtained with the numerical resolution of the dynamical system itself. The work presented here is an extension of previous results on this topic and contributes to the understanding of the mechanisms by which a system changes its stability by fragmenting its basin of attraction. This, in turn, enriches the field by providing an alternative to numerical resolution to identify quantitative changes in the dynamics of complex systems without having to solve the differential equation system.
Ethical Statement
The authors state that there are no ethical conflicts in publishing this paper since it does not involve experiments with living beings.
Supporting Institution
J.L.E.M. thanks CONAHCYT for financial support (CVU-706850), and to CICESE.
Project Number
CVU-706850
Thanks
J.L.E.M. thanks CONAHCYT for financial support (CVU-706850), and to J.A.G. for the opportunity to do a postdoctoral fellowship at CICESE.
References
- Anzo-Hernández, A., H. Gilardi-Velázquez, and E. Campos-
Cantón, 2018 On multistability behavior of unstable dissipative
systems. Chaos: An Interdisciplinary Journal of Nonlinear
Science 28: 033613.
- Awal, N. M. and I. R. Epstein, 2021 Period-doubling route to mixedmode
chaos. Physical Review E 104: 024211.
- Biggs, R., S. R. Carpenter, andW. A. Brock, 2009 Turning back from
the brink: detecting an impending regime shift in time to avert it.
Proceedings of the National academy of Sciences 106: 826–831.
- Campos-Cantón, E., 2015 Switched systems based on unstable
dissipative systems. IFAC-PapersOnLine 48: 116–121.
- Campos-Cantón, E., J. G. Barajas-Ramirez, G. Solis-Perales, and
R. Femat, 2010 Multiscroll attractors by switching systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science 20.
- Chen, L., F. Nazarimehr, S. Jafari, E. Tlelo-Cuautle, and I. Hussain,
2020 Investigation of early warning indexes in a threedimensional
chaotic system with zero eigenvalues. Entropy 22:
341.
- Echenausía-Monroy, J., J. Cuesta-García, and J. Ramirez-Pena, 2022
The wonder world of complex systems. Chaos Theory and Applications
4: 267–273.
- Echenausía-Monroy, J., H. Gilardi-Velázquez, N.Wang, R. Jaimes-
Reátegui, J. García-López, et al., 2022a Multistability route in
a pwl multi-scroll system through fractional-order derivatives.
Chaos, Solitons & Fractals 161: 112355.
- Echenausía-Monroy, J., S. Jafari, G. Huerta-Cuellar, and H. Gilardi-
Velázquez, 2022b Predicting the emergence of multistability in a
monoparametric pwl system. International Journal of Bifurcation
and Chaos 32: 2250206.
- Echenausía-Monroy, J. L., J. García-López, R. Jaimes-Reátegui,
D. López-Mancilla, and G. Huerta-Cuellar, 2018 Family of
bistable attractors contained in an unstable dissipative switching
system associated to a snlf. Complexity 2018.
- Echenausía-Monroy, J. L., G. Huerta-Cuellar, R. Jaimes-Reátegui,
J. H. García-López, V. Aboites, et al., 2020 Multistability emergence
through fractional-order-derivatives in a pwl multi-scroll
system. Electronics 9: 880.
- Fang, S., S. Zhou, D. Yurchenko, T. Yang, andW.-H. Liao, 2022 Multistability
phenomenon in signal processing, energy harvesting,
composite structures, and metamaterials: A review. Mechanical
Systems and Signal Processing 166: 108419.
- Gilardi-Velázquez, H. E., R. d. J. Escalante-González, and
E. Campos-Cantón, 2018 Bistable behavior via switching dissipative
systems with unstable dynamics and its electronic design.
IFAC-PapersOnLine 51: 502–507.
- Gilardi-Velázquez, H. E., L. Ontañón-García, D. G. Hurtado-
Rodriguez, and E. Campos-Cantón, 2017 Multistability in piecewise
linear systems versus eigenspectra variation and round
function. International Journal of Bifurcation and Chaos 27:
1730031.
- Guan, S., C.-H. Lai, and G.Wei, 2005 Bistable chaos without symmetry
in generalized synchronization. Physical Review E 71:
036209.
- Jiang, J., A. Hastings, and Y.-C. Lai, 2019 Harnessing tipping points
in complex ecological networks. Journal of the Royal Society
Interface 16: 20190345.
- Jiang, J., Z.-G. Huang, T. P. Seager,W. Lin, C. Grebogi, et al., 2018
Predicting tipping points in mutualistic networks through dimension
reduction. Proceedings of the National Academy of
Sciences 115: E639–E647.
- Jung, H. and J. W. Ager, 2023 A tipping point for solar production
of hydrogen? Joule 7: 459–461.
- Kele¸s, Z., G. Sonugür, and M. Alçin, 2023 The modeling of the
rucklidge chaotic system with artificial neural networks. Chaos
Theory and Applications 5: 59–64.
- Kleiner, I., 2007 A history of abstract algebra. Springer Science &
Business Media.
- Lane, S. N., 2011 The tipping point: How little things can make a
big difference. Geography 96: 34–38.
- Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, et al., 2008
Tipping elements in the earth’s climate system. Proceedings of
the national Academy of Sciences 105: 1786–1793.
- Lohmann, J., D. Castellana, P. D. Ditlevsen, and H. A. Dijkstra, 2021
Abrupt climate change as a rate-dependent cascading tipping
point. Earth System Dynamics 12: 819–835.
- Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
atmospheric sciences 20: 130–141.
- Moghadam, N. N., R. Ramamoorthy, F. Nazarimehr, K. Rajagopal,
and S. Jafari, 2022 Tipping points of a complex network biomass
model: Local and global parameter variations. Physica A: Statistical
Mechanics and its Applications 592: 126845.
- Moore, J. C., 2018 Predicting tipping points in complex environmental
systems. Proceedings of the National Academy of Sciences
115: 635–636.
- Nazarimehr, F., S. Jafari, S. M. R. Hashemi Golpayegani, M. Perc,
and J. C. Sprott, 2018 Predicting tipping points of dynamical
systems during a period-doubling route to chaos. Chaos: An
Interdisciplinary Journal of Nonlinear Science 28.
- Ott, E., 2002 Chaos in dynamical systems. Cambridge university
press.
- O’Regan, S. M., E. B. O’Dea, P. Rohani, and J. M. Drake, 2020 Transient
indicators of tipping points in infectious diseases. Journal
of the Royal Society Interface 17: 20200094.
- Peng, X., M. Small, Y. Zhao, and J. M. Moore, 2019 Detecting and
predicting tipping points. International Journal of Bifurcation
and Chaos 29: 1930022.
- Rial, J. A., R. A. Pielke, M. Beniston, M. Claussen, J. Canadell, et al.,
2004 Nonlinearities, feedbacks and critical thresholds within the
earth’s climate system. Climatic change 65: 11–38.
- Safavi, S. and P. Dayan, 2022 Multistability, perceptual value, and
internal foraging. Neuron.
- Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker, 2001
Catastrophic shifts in ecosystems. Nature 413: 591–596.
- Tsakonas, S., M. Hanias, and L. Magafas, 2022 Application of the
moving lyapunov exponent to the s&p 500 index to predict major declines. Journal of Risk.
- Wunderling, N., A. von der Heydt, Y. Aksenov, S. Barker, R. Bastiaansen,
et al., 2023 Climate tipping point interactions and cascades:
A review. EGUsphere 2023: 1–45.
Year 2024,
Volume: 6 Issue: 2, 73 - 82, 30.06.2024
J. L. Echenausía-monroy
,
Rıcardo Cuesta-garcía
,
Hector Gilardi-velázquez
,
Sishu Shankar Muni
,
Joaquin Alvarez-gallegos
Project Number
CVU-706850
References
- Anzo-Hernández, A., H. Gilardi-Velázquez, and E. Campos-
Cantón, 2018 On multistability behavior of unstable dissipative
systems. Chaos: An Interdisciplinary Journal of Nonlinear
Science 28: 033613.
- Awal, N. M. and I. R. Epstein, 2021 Period-doubling route to mixedmode
chaos. Physical Review E 104: 024211.
- Biggs, R., S. R. Carpenter, andW. A. Brock, 2009 Turning back from
the brink: detecting an impending regime shift in time to avert it.
Proceedings of the National academy of Sciences 106: 826–831.
- Campos-Cantón, E., 2015 Switched systems based on unstable
dissipative systems. IFAC-PapersOnLine 48: 116–121.
- Campos-Cantón, E., J. G. Barajas-Ramirez, G. Solis-Perales, and
R. Femat, 2010 Multiscroll attractors by switching systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science 20.
- Chen, L., F. Nazarimehr, S. Jafari, E. Tlelo-Cuautle, and I. Hussain,
2020 Investigation of early warning indexes in a threedimensional
chaotic system with zero eigenvalues. Entropy 22:
341.
- Echenausía-Monroy, J., J. Cuesta-García, and J. Ramirez-Pena, 2022
The wonder world of complex systems. Chaos Theory and Applications
4: 267–273.
- Echenausía-Monroy, J., H. Gilardi-Velázquez, N.Wang, R. Jaimes-
Reátegui, J. García-López, et al., 2022a Multistability route in
a pwl multi-scroll system through fractional-order derivatives.
Chaos, Solitons & Fractals 161: 112355.
- Echenausía-Monroy, J., S. Jafari, G. Huerta-Cuellar, and H. Gilardi-
Velázquez, 2022b Predicting the emergence of multistability in a
monoparametric pwl system. International Journal of Bifurcation
and Chaos 32: 2250206.
- Echenausía-Monroy, J. L., J. García-López, R. Jaimes-Reátegui,
D. López-Mancilla, and G. Huerta-Cuellar, 2018 Family of
bistable attractors contained in an unstable dissipative switching
system associated to a snlf. Complexity 2018.
- Echenausía-Monroy, J. L., G. Huerta-Cuellar, R. Jaimes-Reátegui,
J. H. García-López, V. Aboites, et al., 2020 Multistability emergence
through fractional-order-derivatives in a pwl multi-scroll
system. Electronics 9: 880.
- Fang, S., S. Zhou, D. Yurchenko, T. Yang, andW.-H. Liao, 2022 Multistability
phenomenon in signal processing, energy harvesting,
composite structures, and metamaterials: A review. Mechanical
Systems and Signal Processing 166: 108419.
- Gilardi-Velázquez, H. E., R. d. J. Escalante-González, and
E. Campos-Cantón, 2018 Bistable behavior via switching dissipative
systems with unstable dynamics and its electronic design.
IFAC-PapersOnLine 51: 502–507.
- Gilardi-Velázquez, H. E., L. Ontañón-García, D. G. Hurtado-
Rodriguez, and E. Campos-Cantón, 2017 Multistability in piecewise
linear systems versus eigenspectra variation and round
function. International Journal of Bifurcation and Chaos 27:
1730031.
- Guan, S., C.-H. Lai, and G.Wei, 2005 Bistable chaos without symmetry
in generalized synchronization. Physical Review E 71:
036209.
- Jiang, J., A. Hastings, and Y.-C. Lai, 2019 Harnessing tipping points
in complex ecological networks. Journal of the Royal Society
Interface 16: 20190345.
- Jiang, J., Z.-G. Huang, T. P. Seager,W. Lin, C. Grebogi, et al., 2018
Predicting tipping points in mutualistic networks through dimension
reduction. Proceedings of the National Academy of
Sciences 115: E639–E647.
- Jung, H. and J. W. Ager, 2023 A tipping point for solar production
of hydrogen? Joule 7: 459–461.
- Kele¸s, Z., G. Sonugür, and M. Alçin, 2023 The modeling of the
rucklidge chaotic system with artificial neural networks. Chaos
Theory and Applications 5: 59–64.
- Kleiner, I., 2007 A history of abstract algebra. Springer Science &
Business Media.
- Lane, S. N., 2011 The tipping point: How little things can make a
big difference. Geography 96: 34–38.
- Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, et al., 2008
Tipping elements in the earth’s climate system. Proceedings of
the national Academy of Sciences 105: 1786–1793.
- Lohmann, J., D. Castellana, P. D. Ditlevsen, and H. A. Dijkstra, 2021
Abrupt climate change as a rate-dependent cascading tipping
point. Earth System Dynamics 12: 819–835.
- Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
atmospheric sciences 20: 130–141.
- Moghadam, N. N., R. Ramamoorthy, F. Nazarimehr, K. Rajagopal,
and S. Jafari, 2022 Tipping points of a complex network biomass
model: Local and global parameter variations. Physica A: Statistical
Mechanics and its Applications 592: 126845.
- Moore, J. C., 2018 Predicting tipping points in complex environmental
systems. Proceedings of the National Academy of Sciences
115: 635–636.
- Nazarimehr, F., S. Jafari, S. M. R. Hashemi Golpayegani, M. Perc,
and J. C. Sprott, 2018 Predicting tipping points of dynamical
systems during a period-doubling route to chaos. Chaos: An
Interdisciplinary Journal of Nonlinear Science 28.
- Ott, E., 2002 Chaos in dynamical systems. Cambridge university
press.
- O’Regan, S. M., E. B. O’Dea, P. Rohani, and J. M. Drake, 2020 Transient
indicators of tipping points in infectious diseases. Journal
of the Royal Society Interface 17: 20200094.
- Peng, X., M. Small, Y. Zhao, and J. M. Moore, 2019 Detecting and
predicting tipping points. International Journal of Bifurcation
and Chaos 29: 1930022.
- Rial, J. A., R. A. Pielke, M. Beniston, M. Claussen, J. Canadell, et al.,
2004 Nonlinearities, feedbacks and critical thresholds within the
earth’s climate system. Climatic change 65: 11–38.
- Safavi, S. and P. Dayan, 2022 Multistability, perceptual value, and
internal foraging. Neuron.
- Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker, 2001
Catastrophic shifts in ecosystems. Nature 413: 591–596.
- Tsakonas, S., M. Hanias, and L. Magafas, 2022 Application of the
moving lyapunov exponent to the s&p 500 index to predict major declines. Journal of Risk.
- Wunderling, N., A. von der Heydt, Y. Aksenov, S. Barker, R. Bastiaansen,
et al., 2023 Climate tipping point interactions and cascades:
A review. EGUsphere 2023: 1–45.