Research Article
BibTex RIS Cite
Year 2024, Volume: 6 Issue: 2, 111 - 121, 30.06.2024
https://doi.org/10.51537/chaos.1376424

Abstract

Project Number

DESARROLLO DE LOS MODELOS NUMÉRICOS PARA EL ESTUDIO DE GUÍAS DE ONDAS DE CRISTALES FOTÓNICOS Y FONÓNICOS

References

  • Beranek, L. L. and T. Mellow, 2012 Acoustics: sound fields and transducers. Academic Press.
  • Berry, M. V., 1977 Regular and irregular semiclassical wavefunctions. Journal of Physics A: Mathematical and General 10: 2083– 2091.
  • Blackstock, D. T., 2001 Chapter 2 Detailed Development of Acoustical Wave Equations, pp. 65–107 in Fundamentals of Physical Acoustics, Acoustical Society of America.
  • Bloch, F., 1929 Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik 52: 555–600.
  • Bose, R. and S. Pathak, 2006 A novel compression and encryption scheme using variable model arithmetic coding and coupled chaotic system. IEEE Transactions on Circuits and Systems I: Regular Papers 53: 848–857.
  • Chen, M., H. Jiang, H. Zhang, D. Li, and Y.Wang, 2018 Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Scientific reports 8: 1–8.
  • De Rosny, J., A. Tourin, and M. Fink, 2000 Coherent backscattering of an elastic wave in a chaotic cavity. Physical review letters 84: 1693–1695.
  • Dembowski, C., H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, et al., 2000 First experimental evidence for chaos-assisted tunneling in a microwave annular billiard. Physical review letters 84: 867.
  • Deymier, P. A., 2013 Acoustic metamaterials and phononic crystals, volume 173. Springer Science & Business Media.
  • Doya, V., O. Legrand, and F. Mortessagne, 2002a Light scarring in an optical fiber. Physical Review Letters 88: 014102.
  • Doya, V., O. Legrand, F. Mortessagne, and C. Miniatura, 2002b Speckle statistics in a chaotic multimode fiber. Physical Review E 65: 056223.
  • El-Kady, I., R. Olsson III, and J. Fleming, 2008 Phononic band-gap crystals for radio frequency communications. Applied Physics Letters 92: 233504.
  • Ellegaard, C., K. Schaadt, and P. Bertelsen, 2001 Acoustic chaos. Physica Scripta 2001: 223–230.
  • Filippi, P., A. Bergassoli, D. Habault, and J. P. Lefebvre, 1998 Acoustics: basic physics, theory, and methods. Elsevier.
  • Ginsberg, J. H., 2018a Chapter 4 Principles and Equations for Multidimensional Phenomena, pp. 295–346 in Acoustics: A Textbook for Engineers and Physicists, Springer.
  • Ginsberg, J. H., 2018b Acoustics: A Textbook for Engineers and Physicists, volume 1. Springer.
  • He, J., S. Yang, Z. Hileman, R.Wang, D. Homa, et al., 2020 An acoustic waveguide with tight field confinement for high temperature sensing. IEEE Sensors Journal 20: 14126–14131.
  • Heller, E. J., 1984 Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits. Physical Review Letters 53: 1515–1518.
  • Hensinger, W. K., H. Häffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, et al., 2001 Dynamical tunnelling of ultracold atoms. Nature 412: 52–55.
  • Jia, Z., Y. Chen, H. Yang, and L.Wang, 2018 Designing phononic crystals with wide and robust band gaps. Physical Review Applied 9: 044021.
  • Jing, L., Z. Li, Y. Li, and R. D. Murch, 2018 Channel characterization of acoustic waveguides consisting of straight gas and water pipelines. IEEE Access 6: 6807–6819.
  • Kaplan, L., 1998Wave function intensity statistics from unstable periodic orbits. Physical review letters 80: 2582–2585.
  • Kaplan, L. and E. Heller, 1999 Measuring scars of periodic orbits. Physical Review E 59: 6609–6628.
  • Khelif, A., A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, 2004 Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied physics letters 84: 4400–4402.
  • Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders, 2000 Fundamentals of acoustics. JohnWiley & Sons.
  • Kittel, C., P. McEuen, and P. McEuen, 1996 Introduction to solid state physics, volume 8.Wiley New York.
  • Kudrolli, A., M. C. Abraham, and J. P. Gollub, 2001 Scarred patterns in surface waves. Physical Review E 63: 026208.
  • Kuhl, U., H. Stöckmann, and R.Weaver, 2005 Classical wave experiments on chaotic scattering. Journal of Physics A: Mathematical and General 38: 10433.
  • Lee, H. S., D. H. Luong, M. S. Kim, Y. Jin, H. Kim, et al., 2016 Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nature communications 7: 13663.
  • Legendre, P., 1993 Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673.
  • Liu, J., H. Guo, and T. Wang, 2020 A review of acoustic metamaterials and phononic crystals. Crystals 10: 305.
  • Maldovan, M., 2013 Sound and heat revolutions in phononics. Nature 503: 209–217.
  • McGurn, A. R., 2020 Introduction to Photonic and Phononic Crystals and Metamaterials. Morgan & Claypool Publishers.
  • Mendoza-Suárez, A. and H. Pérez-Aguilar, 2016 Numerical integral methods to study plasmonic modes in a photonic crystal waveguide with circular inclusions that involve a metamaterial. Photonics and Nanostructures-Fundamentals and Applications 21: 1–12.
  • Mendoza-Suárez, A., H. Pérez-Aguilar, and F. Villa-Villa, 2011 Optical response of a perfect conductor waveguide that behaves as a photonic crystal. Progress In Electromagnetics Research 121: 433–452.
  • Mendoza-Suárez, A. and F. Villa-Villa, 2006 Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one- and two-dimensional photonic crystals. Journal of the Optical Society of America B 23: 2249–2256.
  • Montenegro-García, A., 1989 La función de autocorrelación y su empleo en el análisis de series de tiempo. Revista Desarrollo y Sociedad pp. 117–132.
  • Mukhin, N., M. Kutia, A. Aman, U. Steinmann, and R. Lucklum, 2022 Two-dimensional phononic crystal based sensor for characterization of mixtures and heterogeneous liquids. Sensors 22: 2816.
  • Navarro-Urrios, D., N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, et al., 2017 Nonlinear dynamics and chaos in an optomechanical beam. Nature communications 8: 14965.
  • Nöckel, J. U. and A. D. Stone, 1997 Ray and wave chaos in asymmetric resonant optical cavities. Nature 385: 45–47.
  • Otsuka, P. H., K. Nanri, O. Matsuda, M. Tomoda, D. Profunser, et al., 2013 Broadband evolution of phononic-crystal-waveguide eigenstates in real-and k-spaces. Scientific reports 3: 3351.
  • Pennec, Y., B. D. Rouhani, E. El Boudouti, C. Li, Y. El Hassouani, et al., 2010a Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics express 18: 14301– 14310.
  • Pennec, Y., J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzy´ nski, and P. A. Deymier, 2010b Two-dimensional phononic crystals: Examples and applications. Surface Science Reports 65: 229–291.
  • Pérez, H. I., C. I. Valencia, E. R. Méndez, and J. A. Sánchez-Gil, 2009 On the transmission of diffuse light through thick slits. Journal of the Optical Society of America A 26: 909–918.
  • Pérez-Aguilar, H., A. Mendoza-Suárez, E. S. Tututi, and I. F. Herrera-González, 2013 Disordered field patterns in a waveguide with periodic surfaces. Progress In Electromagnetics Research B 48: 329–346.
  • Pike, E. R. and P. C. Sabatier, 2001 Scattering, Two-Volume Set: Scattering and Inverse Scattering in Pure and Applied Science. Elsevier.
  • Ruelle, D., 1991 Chance and Chaos, volume 110. Princeton University Press.
  • Sinai, Y. G., 1970 Dynamical systems with elastic reflections. Russian Mathematical Surveys 25: 137–189.
  • Sridhar, S., 1991 Experimental observation of scarred eigenfunctions of chaotic microwave cavities. Physical review letters 67: 785–788.
  • Sridhar, S. andW. Lu, 2002 Sinai billiards, ruelle zeta-functions and ruelle resonances: microwave experiments. Journal of statistical physics 108: 755–765.
  • Stöckmann, H.-J., 1999 Quantum Chaos: An Introduction. Cambridge University Press, New York.
  • Sugihara, G. and R. M. May, 1990 Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 734.
  • Torrent, D. and J. Sánchez-Dehesa, 2008 Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics 10: 063015.
  • Vilela, M., N. Halidi, S. Besson, H. Elliott, K. Hahn, et al., 2013 Fluctuation analysis of activity biosensor images for the study of information flow in signaling pathways. In Methods in enzymology, volume 519, pp. 253–276, Elsevier.
  • Villa-Villa, F., H. Pérez-Aguilar, and A. Mendoza-Suárez, 2017 The locally corrected Nyström method applied to 3D scalar SIE in acoustic cavities using curvilinear coordinates. Engineering Analysis with Boundary Elements 79: 110–118.
  • Weaver, R. L., 1989 Spectral statistics in elastodynamics. The Journal of the Acoustical Society of America 85: 1005–1013.
  • Wilkinson, P., T. Fromhold, L. Eaves, F. Sheard, N. Miura, et al., 1996 Observation of ‘scarred’ wavefunctions in a quantum well with chaotic electron dynamics. Nature 380: 608–610.
  • Zaki, S. E., A. Mehaney, H. M. Hassanein, and A. H. Aly, 2020 Fano resonance based defected 1D phononic crystal for highly sensitive gas sensing applications. Scientific Reports 10: 17979.
  • Zhou, Y., Z. Hua, C.-M. Pun, and C. P. Chen, 2014 Cascade chaotic system with applications. IEEE transactions on cybernetics 45: 2001–2012.

Numerical Analysis of Chaos in a Phononic Crystal Waveguide with Circular Inclusions of Real Materials

Year 2024, Volume: 6 Issue: 2, 111 - 121, 30.06.2024
https://doi.org/10.51537/chaos.1376424

Abstract

Phononic crystal waveguides (PnCW) have been of great interest due to their properties of manipulating or filtering the acoustic waves with which they interact. Similarly, the presence of the phenomenon of chaos in the classical transport of particles through billiards with analogous geometries has been investigated. With this in consideration, in the present work an acoustic system of a two-dimensional PnCW is modeled, composed of two plane-parallel plates and a periodic arrangement of circular cylindrical inclusions with acoustic surfaces of real materials. In this system, we use the numerical technique of the integral equation, which allows us to obtain the pressure field corresponding to the normal modes in a range of frequencies. In addition, spatial statistical properties of pressure intensity such as the autocorrelation function (ACF) and its standard deviation called correlation length were calculated. The results show that when the correlation length is very small, the system presents disordered patterns of field intensities. Thus under certain conditions, the system under consideration presents a chaotic behavior, similar to the corresponding classical system.

Ethical Statement

This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts of interest to disclose.

Supporting Institution

Coordinación de la investigación cientifíca

Project Number

DESARROLLO DE LOS MODELOS NUMÉRICOS PARA EL ESTUDIO DE GUÍAS DE ONDAS DE CRISTALES FOTÓNICOS Y FONÓNICOS

Thanks

H. Pérez-Aguilar express their gratitude to the Coordinación de la Investigación Científica of the Universidad Michoacana de San Nicolás de Hidalgo for the financial support granted for the development of this research project. Likewise, this work was supported by Tecnológico Nacional de México (TecNM) unit Morelia, and Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT).

References

  • Beranek, L. L. and T. Mellow, 2012 Acoustics: sound fields and transducers. Academic Press.
  • Berry, M. V., 1977 Regular and irregular semiclassical wavefunctions. Journal of Physics A: Mathematical and General 10: 2083– 2091.
  • Blackstock, D. T., 2001 Chapter 2 Detailed Development of Acoustical Wave Equations, pp. 65–107 in Fundamentals of Physical Acoustics, Acoustical Society of America.
  • Bloch, F., 1929 Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik 52: 555–600.
  • Bose, R. and S. Pathak, 2006 A novel compression and encryption scheme using variable model arithmetic coding and coupled chaotic system. IEEE Transactions on Circuits and Systems I: Regular Papers 53: 848–857.
  • Chen, M., H. Jiang, H. Zhang, D. Li, and Y.Wang, 2018 Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Scientific reports 8: 1–8.
  • De Rosny, J., A. Tourin, and M. Fink, 2000 Coherent backscattering of an elastic wave in a chaotic cavity. Physical review letters 84: 1693–1695.
  • Dembowski, C., H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, et al., 2000 First experimental evidence for chaos-assisted tunneling in a microwave annular billiard. Physical review letters 84: 867.
  • Deymier, P. A., 2013 Acoustic metamaterials and phononic crystals, volume 173. Springer Science & Business Media.
  • Doya, V., O. Legrand, and F. Mortessagne, 2002a Light scarring in an optical fiber. Physical Review Letters 88: 014102.
  • Doya, V., O. Legrand, F. Mortessagne, and C. Miniatura, 2002b Speckle statistics in a chaotic multimode fiber. Physical Review E 65: 056223.
  • El-Kady, I., R. Olsson III, and J. Fleming, 2008 Phononic band-gap crystals for radio frequency communications. Applied Physics Letters 92: 233504.
  • Ellegaard, C., K. Schaadt, and P. Bertelsen, 2001 Acoustic chaos. Physica Scripta 2001: 223–230.
  • Filippi, P., A. Bergassoli, D. Habault, and J. P. Lefebvre, 1998 Acoustics: basic physics, theory, and methods. Elsevier.
  • Ginsberg, J. H., 2018a Chapter 4 Principles and Equations for Multidimensional Phenomena, pp. 295–346 in Acoustics: A Textbook for Engineers and Physicists, Springer.
  • Ginsberg, J. H., 2018b Acoustics: A Textbook for Engineers and Physicists, volume 1. Springer.
  • He, J., S. Yang, Z. Hileman, R.Wang, D. Homa, et al., 2020 An acoustic waveguide with tight field confinement for high temperature sensing. IEEE Sensors Journal 20: 14126–14131.
  • Heller, E. J., 1984 Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits. Physical Review Letters 53: 1515–1518.
  • Hensinger, W. K., H. Häffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, et al., 2001 Dynamical tunnelling of ultracold atoms. Nature 412: 52–55.
  • Jia, Z., Y. Chen, H. Yang, and L.Wang, 2018 Designing phononic crystals with wide and robust band gaps. Physical Review Applied 9: 044021.
  • Jing, L., Z. Li, Y. Li, and R. D. Murch, 2018 Channel characterization of acoustic waveguides consisting of straight gas and water pipelines. IEEE Access 6: 6807–6819.
  • Kaplan, L., 1998Wave function intensity statistics from unstable periodic orbits. Physical review letters 80: 2582–2585.
  • Kaplan, L. and E. Heller, 1999 Measuring scars of periodic orbits. Physical Review E 59: 6609–6628.
  • Khelif, A., A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, 2004 Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied physics letters 84: 4400–4402.
  • Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders, 2000 Fundamentals of acoustics. JohnWiley & Sons.
  • Kittel, C., P. McEuen, and P. McEuen, 1996 Introduction to solid state physics, volume 8.Wiley New York.
  • Kudrolli, A., M. C. Abraham, and J. P. Gollub, 2001 Scarred patterns in surface waves. Physical Review E 63: 026208.
  • Kuhl, U., H. Stöckmann, and R.Weaver, 2005 Classical wave experiments on chaotic scattering. Journal of Physics A: Mathematical and General 38: 10433.
  • Lee, H. S., D. H. Luong, M. S. Kim, Y. Jin, H. Kim, et al., 2016 Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nature communications 7: 13663.
  • Legendre, P., 1993 Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673.
  • Liu, J., H. Guo, and T. Wang, 2020 A review of acoustic metamaterials and phononic crystals. Crystals 10: 305.
  • Maldovan, M., 2013 Sound and heat revolutions in phononics. Nature 503: 209–217.
  • McGurn, A. R., 2020 Introduction to Photonic and Phononic Crystals and Metamaterials. Morgan & Claypool Publishers.
  • Mendoza-Suárez, A. and H. Pérez-Aguilar, 2016 Numerical integral methods to study plasmonic modes in a photonic crystal waveguide with circular inclusions that involve a metamaterial. Photonics and Nanostructures-Fundamentals and Applications 21: 1–12.
  • Mendoza-Suárez, A., H. Pérez-Aguilar, and F. Villa-Villa, 2011 Optical response of a perfect conductor waveguide that behaves as a photonic crystal. Progress In Electromagnetics Research 121: 433–452.
  • Mendoza-Suárez, A. and F. Villa-Villa, 2006 Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one- and two-dimensional photonic crystals. Journal of the Optical Society of America B 23: 2249–2256.
  • Montenegro-García, A., 1989 La función de autocorrelación y su empleo en el análisis de series de tiempo. Revista Desarrollo y Sociedad pp. 117–132.
  • Mukhin, N., M. Kutia, A. Aman, U. Steinmann, and R. Lucklum, 2022 Two-dimensional phononic crystal based sensor for characterization of mixtures and heterogeneous liquids. Sensors 22: 2816.
  • Navarro-Urrios, D., N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, et al., 2017 Nonlinear dynamics and chaos in an optomechanical beam. Nature communications 8: 14965.
  • Nöckel, J. U. and A. D. Stone, 1997 Ray and wave chaos in asymmetric resonant optical cavities. Nature 385: 45–47.
  • Otsuka, P. H., K. Nanri, O. Matsuda, M. Tomoda, D. Profunser, et al., 2013 Broadband evolution of phononic-crystal-waveguide eigenstates in real-and k-spaces. Scientific reports 3: 3351.
  • Pennec, Y., B. D. Rouhani, E. El Boudouti, C. Li, Y. El Hassouani, et al., 2010a Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics express 18: 14301– 14310.
  • Pennec, Y., J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzy´ nski, and P. A. Deymier, 2010b Two-dimensional phononic crystals: Examples and applications. Surface Science Reports 65: 229–291.
  • Pérez, H. I., C. I. Valencia, E. R. Méndez, and J. A. Sánchez-Gil, 2009 On the transmission of diffuse light through thick slits. Journal of the Optical Society of America A 26: 909–918.
  • Pérez-Aguilar, H., A. Mendoza-Suárez, E. S. Tututi, and I. F. Herrera-González, 2013 Disordered field patterns in a waveguide with periodic surfaces. Progress In Electromagnetics Research B 48: 329–346.
  • Pike, E. R. and P. C. Sabatier, 2001 Scattering, Two-Volume Set: Scattering and Inverse Scattering in Pure and Applied Science. Elsevier.
  • Ruelle, D., 1991 Chance and Chaos, volume 110. Princeton University Press.
  • Sinai, Y. G., 1970 Dynamical systems with elastic reflections. Russian Mathematical Surveys 25: 137–189.
  • Sridhar, S., 1991 Experimental observation of scarred eigenfunctions of chaotic microwave cavities. Physical review letters 67: 785–788.
  • Sridhar, S. andW. Lu, 2002 Sinai billiards, ruelle zeta-functions and ruelle resonances: microwave experiments. Journal of statistical physics 108: 755–765.
  • Stöckmann, H.-J., 1999 Quantum Chaos: An Introduction. Cambridge University Press, New York.
  • Sugihara, G. and R. M. May, 1990 Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 734.
  • Torrent, D. and J. Sánchez-Dehesa, 2008 Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics 10: 063015.
  • Vilela, M., N. Halidi, S. Besson, H. Elliott, K. Hahn, et al., 2013 Fluctuation analysis of activity biosensor images for the study of information flow in signaling pathways. In Methods in enzymology, volume 519, pp. 253–276, Elsevier.
  • Villa-Villa, F., H. Pérez-Aguilar, and A. Mendoza-Suárez, 2017 The locally corrected Nyström method applied to 3D scalar SIE in acoustic cavities using curvilinear coordinates. Engineering Analysis with Boundary Elements 79: 110–118.
  • Weaver, R. L., 1989 Spectral statistics in elastodynamics. The Journal of the Acoustical Society of America 85: 1005–1013.
  • Wilkinson, P., T. Fromhold, L. Eaves, F. Sheard, N. Miura, et al., 1996 Observation of ‘scarred’ wavefunctions in a quantum well with chaotic electron dynamics. Nature 380: 608–610.
  • Zaki, S. E., A. Mehaney, H. M. Hassanein, and A. H. Aly, 2020 Fano resonance based defected 1D phononic crystal for highly sensitive gas sensing applications. Scientific Reports 10: 17979.
  • Zhou, Y., Z. Hua, C.-M. Pun, and C. P. Chen, 2014 Cascade chaotic system with applications. IEEE transactions on cybernetics 45: 2001–2012.
There are 59 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Classical Physics (Other)
Journal Section Research Articles
Authors

Alejandro Bucio 0009-0000-3295-4157

Héctor Pérez-aguılar 0000-0002-8572-1485

Hugo Enrique Alva-medrano 0009-0006-0076-2402

Project Number DESARROLLO DE LOS MODELOS NUMÉRICOS PARA EL ESTUDIO DE GUÍAS DE ONDAS DE CRISTALES FOTÓNICOS Y FONÓNICOS
Early Pub Date June 19, 2024
Publication Date June 30, 2024
Submission Date October 16, 2023
Acceptance Date December 5, 2023
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Bucio, A., Pérez-aguılar, H., & Alva-medrano, H. E. (2024). Numerical Analysis of Chaos in a Phononic Crystal Waveguide with Circular Inclusions of Real Materials. Chaos Theory and Applications, 6(2), 111-121. https://doi.org/10.51537/chaos.1376424

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg