Year 2024,
Volume: 6 Issue: 2, 111 - 121, 30.06.2024
Alejandro Bucio
,
Héctor Pérez-aguılar
,
Hugo Enrique Alva-medrano
Project Number
DESARROLLO DE LOS MODELOS NUMÉRICOS PARA EL ESTUDIO DE GUÍAS DE ONDAS DE CRISTALES FOTÓNICOS Y FONÓNICOS
References
- Beranek, L. L. and T. Mellow, 2012 Acoustics: sound fields and transducers.
Academic Press.
- Berry, M. V., 1977 Regular and irregular semiclassical wavefunctions.
Journal of Physics A: Mathematical and General 10: 2083–
2091.
- Blackstock, D. T., 2001 Chapter 2 Detailed Development of Acoustical
Wave Equations, pp. 65–107 in Fundamentals of Physical
Acoustics, Acoustical Society of America.
- Bloch, F., 1929 Über die quantenmechanik der elektronen in kristallgittern.
Zeitschrift für physik 52: 555–600.
- Bose, R. and S. Pathak, 2006 A novel compression and encryption
scheme using variable model arithmetic coding and coupled
chaotic system. IEEE Transactions on Circuits and Systems I:
Regular Papers 53: 848–857.
- Chen, M., H. Jiang, H. Zhang, D. Li, and Y.Wang, 2018 Design of
an acoustic superlens using single-phase metamaterials with a
star-shaped lattice structure. Scientific reports 8: 1–8.
- De Rosny, J., A. Tourin, and M. Fink, 2000 Coherent backscattering
of an elastic wave in a chaotic cavity. Physical review letters 84:
1693–1695.
- Dembowski, C., H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld,
et al., 2000 First experimental evidence for chaos-assisted tunneling
in a microwave annular billiard. Physical review letters 84:
867.
- Deymier, P. A., 2013 Acoustic metamaterials and phononic crystals,
volume 173. Springer Science & Business Media.
- Doya, V., O. Legrand, and F. Mortessagne, 2002a Light scarring in
an optical fiber. Physical Review Letters 88: 014102.
- Doya, V., O. Legrand, F. Mortessagne, and C. Miniatura, 2002b
Speckle statistics in a chaotic multimode fiber. Physical Review
E 65: 056223.
- El-Kady, I., R. Olsson III, and J. Fleming, 2008 Phononic band-gap
crystals for radio frequency communications. Applied Physics
Letters 92: 233504.
- Ellegaard, C., K. Schaadt, and P. Bertelsen, 2001 Acoustic chaos.
Physica Scripta 2001: 223–230.
- Filippi, P., A. Bergassoli, D. Habault, and J. P. Lefebvre, 1998 Acoustics:
basic physics, theory, and methods. Elsevier.
- Ginsberg, J. H., 2018a Chapter 4 Principles and Equations for Multidimensional
Phenomena, pp. 295–346 in Acoustics: A Textbook
for Engineers and Physicists, Springer.
- Ginsberg, J. H., 2018b Acoustics: A Textbook for Engineers and Physicists,
volume 1. Springer.
- He, J., S. Yang, Z. Hileman, R.Wang, D. Homa, et al., 2020 An acoustic
waveguide with tight field confinement for high temperature
sensing. IEEE Sensors Journal 20: 14126–14131.
- Heller, E. J., 1984 Bound-state eigenfunctions of classically chaotic
hamiltonian systems: scars of periodic orbits. Physical Review
Letters 53: 1515–1518.
- Hensinger, W. K., H. Häffner, A. Browaeys, N. R. Heckenberg,
K. Helmerson, et al., 2001 Dynamical tunnelling of ultracold
atoms. Nature 412: 52–55.
- Jia, Z., Y. Chen, H. Yang, and L.Wang, 2018 Designing phononic
crystals with wide and robust band gaps. Physical Review Applied
9: 044021.
- Jing, L., Z. Li, Y. Li, and R. D. Murch, 2018 Channel characterization
of acoustic waveguides consisting of straight gas and water
pipelines. IEEE Access 6: 6807–6819.
- Kaplan, L., 1998Wave function intensity statistics from unstable
periodic orbits. Physical review letters 80: 2582–2585.
- Kaplan, L. and E. Heller, 1999 Measuring scars of periodic orbits.
Physical Review E 59: 6609–6628.
- Khelif, A., A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and
V. Laude, 2004 Guiding and bending of acoustic waves in highly
confined phononic crystal waveguides. Applied physics letters
84: 4400–4402.
- Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders, 2000
Fundamentals of acoustics. JohnWiley & Sons.
- Kittel, C., P. McEuen, and P. McEuen, 1996 Introduction to solid state
physics, volume 8.Wiley New York.
- Kudrolli, A., M. C. Abraham, and J. P. Gollub, 2001 Scarred patterns
in surface waves. Physical Review E 63: 026208.
- Kuhl, U., H. Stöckmann, and R.Weaver, 2005 Classical wave experiments
on chaotic scattering. Journal of Physics A: Mathematical
and General 38: 10433.
- Lee, H. S., D. H. Luong, M. S. Kim, Y. Jin, H. Kim, et al., 2016 Reconfigurable
exciton-plasmon interconversion for nanophotonic
circuits. Nature communications 7: 13663.
- Legendre, P., 1993 Spatial autocorrelation: trouble or new
paradigm? Ecology 74: 1659–1673.
- Liu, J., H. Guo, and T. Wang, 2020 A review of acoustic metamaterials
and phononic crystals. Crystals 10: 305.
- Maldovan, M., 2013 Sound and heat revolutions in phononics.
Nature 503: 209–217.
- McGurn, A. R., 2020 Introduction to Photonic and Phononic Crystals
and Metamaterials. Morgan & Claypool Publishers.
- Mendoza-Suárez, A. and H. Pérez-Aguilar, 2016 Numerical integral
methods to study plasmonic modes in a photonic crystal
waveguide with circular inclusions that involve a metamaterial.
Photonics and Nanostructures-Fundamentals and Applications
21: 1–12.
- Mendoza-Suárez, A., H. Pérez-Aguilar, and F. Villa-Villa, 2011
Optical response of a perfect conductor waveguide that behaves
as a photonic crystal. Progress In Electromagnetics Research 121:
433–452.
- Mendoza-Suárez, A. and F. Villa-Villa, 2006 Numerical method
based on the solution of integral equations for the calculation of
the band structure and reflectance of one- and two-dimensional
photonic crystals. Journal of the Optical Society of America B 23:
2249–2256.
- Montenegro-García, A., 1989 La función de autocorrelación y su
empleo en el análisis de series de tiempo. Revista Desarrollo y
Sociedad pp. 117–132.
- Mukhin, N., M. Kutia, A. Aman, U. Steinmann, and R. Lucklum,
2022 Two-dimensional phononic crystal based sensor for characterization
of mixtures and heterogeneous liquids. Sensors 22:
2816.
- Navarro-Urrios, D., N. E. Capuj, M. F. Colombano, P. D. García,
M. Sledzinska, et al., 2017 Nonlinear dynamics and chaos in an
optomechanical beam. Nature communications 8: 14965.
- Nöckel, J. U. and A. D. Stone, 1997 Ray and wave chaos in asymmetric
resonant optical cavities. Nature 385: 45–47.
- Otsuka, P. H., K. Nanri, O. Matsuda, M. Tomoda, D. Profunser,
et al., 2013 Broadband evolution of phononic-crystal-waveguide
eigenstates in real-and k-spaces. Scientific reports 3: 3351.
- Pennec, Y., B. D. Rouhani, E. El Boudouti, C. Li, Y. El Hassouani,
et al., 2010a Simultaneous existence of phononic and photonic
band gaps in periodic crystal slabs. Optics express 18: 14301–
14310.
- Pennec, Y., J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzy´ nski, and
P. A. Deymier, 2010b Two-dimensional phononic crystals: Examples
and applications. Surface Science Reports 65: 229–291.
- Pérez, H. I., C. I. Valencia, E. R. Méndez, and J. A. Sánchez-Gil, 2009
On the transmission of diffuse light through thick slits. Journal
of the Optical Society of America A 26: 909–918.
- Pérez-Aguilar, H., A. Mendoza-Suárez, E. S. Tututi, and I. F.
Herrera-González, 2013 Disordered field patterns in a waveguide
with periodic surfaces. Progress In Electromagnetics Research
B 48: 329–346.
- Pike, E. R. and P. C. Sabatier, 2001 Scattering, Two-Volume Set: Scattering
and Inverse Scattering in Pure and Applied Science. Elsevier.
- Ruelle, D., 1991 Chance and Chaos, volume 110. Princeton University
Press.
- Sinai, Y. G., 1970 Dynamical systems with elastic reflections. Russian
Mathematical Surveys 25: 137–189.
- Sridhar, S., 1991 Experimental observation of scarred eigenfunctions
of chaotic microwave cavities. Physical review letters 67:
785–788.
- Sridhar, S. andW. Lu, 2002 Sinai billiards, ruelle zeta-functions and
ruelle resonances: microwave experiments. Journal of statistical
physics 108: 755–765.
- Stöckmann, H.-J., 1999 Quantum Chaos: An Introduction. Cambridge
University Press, New York.
- Sugihara, G. and R. M. May, 1990 Nonlinear forecasting as a way
of distinguishing chaos from measurement error in time series.
Nature 344: 734.
- Torrent, D. and J. Sánchez-Dehesa, 2008 Acoustic cloaking in two
dimensions: a feasible approach. New Journal of Physics 10:
063015.
- Vilela, M., N. Halidi, S. Besson, H. Elliott, K. Hahn, et al., 2013
Fluctuation analysis of activity biosensor images for the study
of information flow in signaling pathways. In Methods in enzymology,
volume 519, pp. 253–276, Elsevier.
- Villa-Villa, F., H. Pérez-Aguilar, and A. Mendoza-Suárez, 2017
The locally corrected Nyström method applied to 3D scalar SIE
in acoustic cavities using curvilinear coordinates. Engineering
Analysis with Boundary Elements 79: 110–118.
- Weaver, R. L., 1989 Spectral statistics in elastodynamics. The Journal
of the Acoustical Society of America 85: 1005–1013.
- Wilkinson, P., T. Fromhold, L. Eaves, F. Sheard, N. Miura, et al.,
1996 Observation of ‘scarred’ wavefunctions in a quantum well
with chaotic electron dynamics. Nature 380: 608–610.
- Zaki, S. E., A. Mehaney, H. M. Hassanein, and A. H. Aly, 2020
Fano resonance based defected 1D phononic crystal for highly
sensitive gas sensing applications. Scientific Reports 10: 17979.
- Zhou, Y., Z. Hua, C.-M. Pun, and C. P. Chen, 2014 Cascade chaotic
system with applications. IEEE transactions on cybernetics 45:
2001–2012.
Numerical Analysis of Chaos in a Phononic Crystal Waveguide with Circular Inclusions of Real Materials
Year 2024,
Volume: 6 Issue: 2, 111 - 121, 30.06.2024
Alejandro Bucio
,
Héctor Pérez-aguılar
,
Hugo Enrique Alva-medrano
Abstract
Phononic crystal waveguides (PnCW) have been of great interest due to their properties of manipulating or filtering the acoustic waves with which they interact. Similarly, the presence of the phenomenon of chaos in the classical transport of particles through billiards with analogous geometries has been investigated. With this in consideration, in the present work an acoustic system of a two-dimensional PnCW is modeled, composed of two plane-parallel plates and a periodic arrangement of circular cylindrical inclusions with acoustic surfaces of real materials. In this system, we use the numerical technique of the integral equation, which allows us to obtain the pressure field corresponding to the normal modes in a range of frequencies. In addition, spatial statistical properties of pressure intensity such as the autocorrelation function (ACF) and its standard deviation called correlation length were calculated. The results show that when the correlation length is very small, the system presents disordered patterns of field intensities. Thus under certain conditions, the system under consideration presents a chaotic behavior, similar to the corresponding classical system.
Ethical Statement
This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts of interest to disclose.
Supporting Institution
Coordinación de la investigación cientifíca
Project Number
DESARROLLO DE LOS MODELOS NUMÉRICOS PARA EL ESTUDIO DE GUÍAS DE ONDAS DE CRISTALES FOTÓNICOS Y FONÓNICOS
Thanks
H. Pérez-Aguilar express their gratitude to the Coordinación de la Investigación Científica of the Universidad Michoacana de San Nicolás de Hidalgo for the financial support granted for the development of this research project. Likewise, this work was supported by Tecnológico Nacional de México (TecNM) unit Morelia, and Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT).
References
- Beranek, L. L. and T. Mellow, 2012 Acoustics: sound fields and transducers.
Academic Press.
- Berry, M. V., 1977 Regular and irregular semiclassical wavefunctions.
Journal of Physics A: Mathematical and General 10: 2083–
2091.
- Blackstock, D. T., 2001 Chapter 2 Detailed Development of Acoustical
Wave Equations, pp. 65–107 in Fundamentals of Physical
Acoustics, Acoustical Society of America.
- Bloch, F., 1929 Über die quantenmechanik der elektronen in kristallgittern.
Zeitschrift für physik 52: 555–600.
- Bose, R. and S. Pathak, 2006 A novel compression and encryption
scheme using variable model arithmetic coding and coupled
chaotic system. IEEE Transactions on Circuits and Systems I:
Regular Papers 53: 848–857.
- Chen, M., H. Jiang, H. Zhang, D. Li, and Y.Wang, 2018 Design of
an acoustic superlens using single-phase metamaterials with a
star-shaped lattice structure. Scientific reports 8: 1–8.
- De Rosny, J., A. Tourin, and M. Fink, 2000 Coherent backscattering
of an elastic wave in a chaotic cavity. Physical review letters 84:
1693–1695.
- Dembowski, C., H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld,
et al., 2000 First experimental evidence for chaos-assisted tunneling
in a microwave annular billiard. Physical review letters 84:
867.
- Deymier, P. A., 2013 Acoustic metamaterials and phononic crystals,
volume 173. Springer Science & Business Media.
- Doya, V., O. Legrand, and F. Mortessagne, 2002a Light scarring in
an optical fiber. Physical Review Letters 88: 014102.
- Doya, V., O. Legrand, F. Mortessagne, and C. Miniatura, 2002b
Speckle statistics in a chaotic multimode fiber. Physical Review
E 65: 056223.
- El-Kady, I., R. Olsson III, and J. Fleming, 2008 Phononic band-gap
crystals for radio frequency communications. Applied Physics
Letters 92: 233504.
- Ellegaard, C., K. Schaadt, and P. Bertelsen, 2001 Acoustic chaos.
Physica Scripta 2001: 223–230.
- Filippi, P., A. Bergassoli, D. Habault, and J. P. Lefebvre, 1998 Acoustics:
basic physics, theory, and methods. Elsevier.
- Ginsberg, J. H., 2018a Chapter 4 Principles and Equations for Multidimensional
Phenomena, pp. 295–346 in Acoustics: A Textbook
for Engineers and Physicists, Springer.
- Ginsberg, J. H., 2018b Acoustics: A Textbook for Engineers and Physicists,
volume 1. Springer.
- He, J., S. Yang, Z. Hileman, R.Wang, D. Homa, et al., 2020 An acoustic
waveguide with tight field confinement for high temperature
sensing. IEEE Sensors Journal 20: 14126–14131.
- Heller, E. J., 1984 Bound-state eigenfunctions of classically chaotic
hamiltonian systems: scars of periodic orbits. Physical Review
Letters 53: 1515–1518.
- Hensinger, W. K., H. Häffner, A. Browaeys, N. R. Heckenberg,
K. Helmerson, et al., 2001 Dynamical tunnelling of ultracold
atoms. Nature 412: 52–55.
- Jia, Z., Y. Chen, H. Yang, and L.Wang, 2018 Designing phononic
crystals with wide and robust band gaps. Physical Review Applied
9: 044021.
- Jing, L., Z. Li, Y. Li, and R. D. Murch, 2018 Channel characterization
of acoustic waveguides consisting of straight gas and water
pipelines. IEEE Access 6: 6807–6819.
- Kaplan, L., 1998Wave function intensity statistics from unstable
periodic orbits. Physical review letters 80: 2582–2585.
- Kaplan, L. and E. Heller, 1999 Measuring scars of periodic orbits.
Physical Review E 59: 6609–6628.
- Khelif, A., A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and
V. Laude, 2004 Guiding and bending of acoustic waves in highly
confined phononic crystal waveguides. Applied physics letters
84: 4400–4402.
- Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders, 2000
Fundamentals of acoustics. JohnWiley & Sons.
- Kittel, C., P. McEuen, and P. McEuen, 1996 Introduction to solid state
physics, volume 8.Wiley New York.
- Kudrolli, A., M. C. Abraham, and J. P. Gollub, 2001 Scarred patterns
in surface waves. Physical Review E 63: 026208.
- Kuhl, U., H. Stöckmann, and R.Weaver, 2005 Classical wave experiments
on chaotic scattering. Journal of Physics A: Mathematical
and General 38: 10433.
- Lee, H. S., D. H. Luong, M. S. Kim, Y. Jin, H. Kim, et al., 2016 Reconfigurable
exciton-plasmon interconversion for nanophotonic
circuits. Nature communications 7: 13663.
- Legendre, P., 1993 Spatial autocorrelation: trouble or new
paradigm? Ecology 74: 1659–1673.
- Liu, J., H. Guo, and T. Wang, 2020 A review of acoustic metamaterials
and phononic crystals. Crystals 10: 305.
- Maldovan, M., 2013 Sound and heat revolutions in phononics.
Nature 503: 209–217.
- McGurn, A. R., 2020 Introduction to Photonic and Phononic Crystals
and Metamaterials. Morgan & Claypool Publishers.
- Mendoza-Suárez, A. and H. Pérez-Aguilar, 2016 Numerical integral
methods to study plasmonic modes in a photonic crystal
waveguide with circular inclusions that involve a metamaterial.
Photonics and Nanostructures-Fundamentals and Applications
21: 1–12.
- Mendoza-Suárez, A., H. Pérez-Aguilar, and F. Villa-Villa, 2011
Optical response of a perfect conductor waveguide that behaves
as a photonic crystal. Progress In Electromagnetics Research 121:
433–452.
- Mendoza-Suárez, A. and F. Villa-Villa, 2006 Numerical method
based on the solution of integral equations for the calculation of
the band structure and reflectance of one- and two-dimensional
photonic crystals. Journal of the Optical Society of America B 23:
2249–2256.
- Montenegro-García, A., 1989 La función de autocorrelación y su
empleo en el análisis de series de tiempo. Revista Desarrollo y
Sociedad pp. 117–132.
- Mukhin, N., M. Kutia, A. Aman, U. Steinmann, and R. Lucklum,
2022 Two-dimensional phononic crystal based sensor for characterization
of mixtures and heterogeneous liquids. Sensors 22:
2816.
- Navarro-Urrios, D., N. E. Capuj, M. F. Colombano, P. D. García,
M. Sledzinska, et al., 2017 Nonlinear dynamics and chaos in an
optomechanical beam. Nature communications 8: 14965.
- Nöckel, J. U. and A. D. Stone, 1997 Ray and wave chaos in asymmetric
resonant optical cavities. Nature 385: 45–47.
- Otsuka, P. H., K. Nanri, O. Matsuda, M. Tomoda, D. Profunser,
et al., 2013 Broadband evolution of phononic-crystal-waveguide
eigenstates in real-and k-spaces. Scientific reports 3: 3351.
- Pennec, Y., B. D. Rouhani, E. El Boudouti, C. Li, Y. El Hassouani,
et al., 2010a Simultaneous existence of phononic and photonic
band gaps in periodic crystal slabs. Optics express 18: 14301–
14310.
- Pennec, Y., J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzy´ nski, and
P. A. Deymier, 2010b Two-dimensional phononic crystals: Examples
and applications. Surface Science Reports 65: 229–291.
- Pérez, H. I., C. I. Valencia, E. R. Méndez, and J. A. Sánchez-Gil, 2009
On the transmission of diffuse light through thick slits. Journal
of the Optical Society of America A 26: 909–918.
- Pérez-Aguilar, H., A. Mendoza-Suárez, E. S. Tututi, and I. F.
Herrera-González, 2013 Disordered field patterns in a waveguide
with periodic surfaces. Progress In Electromagnetics Research
B 48: 329–346.
- Pike, E. R. and P. C. Sabatier, 2001 Scattering, Two-Volume Set: Scattering
and Inverse Scattering in Pure and Applied Science. Elsevier.
- Ruelle, D., 1991 Chance and Chaos, volume 110. Princeton University
Press.
- Sinai, Y. G., 1970 Dynamical systems with elastic reflections. Russian
Mathematical Surveys 25: 137–189.
- Sridhar, S., 1991 Experimental observation of scarred eigenfunctions
of chaotic microwave cavities. Physical review letters 67:
785–788.
- Sridhar, S. andW. Lu, 2002 Sinai billiards, ruelle zeta-functions and
ruelle resonances: microwave experiments. Journal of statistical
physics 108: 755–765.
- Stöckmann, H.-J., 1999 Quantum Chaos: An Introduction. Cambridge
University Press, New York.
- Sugihara, G. and R. M. May, 1990 Nonlinear forecasting as a way
of distinguishing chaos from measurement error in time series.
Nature 344: 734.
- Torrent, D. and J. Sánchez-Dehesa, 2008 Acoustic cloaking in two
dimensions: a feasible approach. New Journal of Physics 10:
063015.
- Vilela, M., N. Halidi, S. Besson, H. Elliott, K. Hahn, et al., 2013
Fluctuation analysis of activity biosensor images for the study
of information flow in signaling pathways. In Methods in enzymology,
volume 519, pp. 253–276, Elsevier.
- Villa-Villa, F., H. Pérez-Aguilar, and A. Mendoza-Suárez, 2017
The locally corrected Nyström method applied to 3D scalar SIE
in acoustic cavities using curvilinear coordinates. Engineering
Analysis with Boundary Elements 79: 110–118.
- Weaver, R. L., 1989 Spectral statistics in elastodynamics. The Journal
of the Acoustical Society of America 85: 1005–1013.
- Wilkinson, P., T. Fromhold, L. Eaves, F. Sheard, N. Miura, et al.,
1996 Observation of ‘scarred’ wavefunctions in a quantum well
with chaotic electron dynamics. Nature 380: 608–610.
- Zaki, S. E., A. Mehaney, H. M. Hassanein, and A. H. Aly, 2020
Fano resonance based defected 1D phononic crystal for highly
sensitive gas sensing applications. Scientific Reports 10: 17979.
- Zhou, Y., Z. Hua, C.-M. Pun, and C. P. Chen, 2014 Cascade chaotic
system with applications. IEEE transactions on cybernetics 45:
2001–2012.