Hybrid Function Projective Synchronization of Hyperchaotic Financial Systems via Adaptive Control
Year 2024,
Volume: 6 Issue: 4, 257 - 263, 30.11.2024
Vikash .
,
Ayub Khan
,
Khursheed Alam
Abstract
In this manuscript, we establish hybrid function projective synchronization of a new hyperchaotic system using an adaptive control technique with unknown system parameters. In order to prevent either from deriving from participants in the single hyperchaotic financial system, identical master and slave systems are chosen. We design an adaptive controller to achieve global chaos synchronization between these master and slave systems. The synchronization results are based on adaptive control theory and Lyapunov stability theory. Additionally, we outline the basic dynamic characteristics of both hyperchaotic financial systems. Numerical simulations performed in Matlab validate our results excellently.
Ethical Statement
This manuscript is prepared with guidelines for conducting scientific research. The study, titled "Hybrid function projective synchronization of hyperchaotic financial systems via adaptive control" is based on theoretical and computational methods, and does not involve anything else, sensitive data, or personal information.
We have ensured that all data used and presented are accurate and appropriately cited, and any errors identified will be promptly corrected. Furthermore, we are committed to sharing data and results, ensuring transparency in research practices.
The authors affirm that this manuscript is their original work, has not been published elsewhere, and is not currently under consideration for publication in any other venue.
Supporting Institution
N/A
Thanks
Thanks for providing the opportunity to submit our research paper to CHTA
References
- Chen, H., L. W. Y., Yu and M. Guo, 2021 Synchronization of a
hyperchaotic finance system. Complexityl p. 6618435.
- Khan, A. and R. Prasad, 2016 Hybrid synchronization of hyperchaotic
CAI systems via sliding mode control. Journal of Engineering
Thermophysics 25(1): 151–157.
- Khan, A. and Shikha., 2017 Hybrid function projective synchronization
of chaotic systems via adaptive control. International
Journal of Dynamics and Control 5: 1114–1121.
- Motallebzadeh, F., M., Motlagh and Z. Cherati, 2012 Synchronization
of different order chaotic systems: Adaptive active vs. optimal
control. Communications in Nonlinear Science and Numerical
Simulation 17(9): 3643–3657.
- Vaidyanathan, S., 2015 Anti-synchronization of Brusselator chemical
reaction systems via adaptive control. International Journal
of ChemTech Research 8(6): 759–768.
- Abd-Elouahab, H. N. E., M.S. and J. Wang, 2010 Chaos control
of a fractionalorder financial system. Mathematical Problems in
Engineering 2010: 270646.
- Al-Azzawi, S and A. Hasan, 2024 A new 4D hidden hyperchaotic
system with higherlargest Lyapunov exponent and its synchronization.
International Journal of Mathematics Statistics and
Computer Sciencel 2: 63–74.
- Cai, G., L. H. P., Yao and X. Fang, 2013 Adaptive full state hybrid
function projective synchronization of financial hyperchaotic
systems with uncertain parameters. Discrete and Continuous
Dynamical Systems-Series B 18(8): 2019–2028.
- Chen and G.ed., 1999 Controlling chaos and bifurcation in engineering
systems. CRC Press .
- Chen, L., Y., Chai and R. Wu, 2011 Control and synchronization
of fractional-order financial system based on linear control. Discrete
Dynamics in Nature and Society 958393: 958393.
- Chen, Y. and X. Li, 2007 Function projective synchronization between
two identical chaotic systems. International journal of
modern physics C 18(05): 883–888.
- Farivar,F., M. N. M., Aliyari Shoorehdeli and M. Teshnehlab, 2012
Chaos control and modified projective synchronization of unknown
heavy symmetric chaotic gyroscope systems via Gaussian
radial basis adaptive backstepping control. Nonllnear Dynamics
64: 1913–1941.
- Kareem, S.O., K., Ojo and A. Njah, 2012 Function projective synchronization
of identical and nonidentical modified finance and
Shimizu Morioka systems. Pramana 79: 71–79.
- Khan, A. and S. ALi, 2024 Hamilton energy, competitive modes
and ultimate bound estimation of a new3D chaotic system, and
its application in chaos synchronization. Physica Scripta 99(11):
115205.
- Koronovskii, A.A., O. S. S., Moskalenko and A. Hramov, 2013
Generalized synchronization in discrete maps. New point of
view on weak and strong synchronization. Chaos, Solitons and
Fractals 46: 12–18.
- L. M. Pecora and T. L. Carroll, 1990 A new class of chaotic circuit.
Pysical review lette 266: 821–824.
- Li, S.Y., C. L. C. K. L., Yang and T. Chiu, 2012 Adaptive synchronization
of chaotic systems with unknown parameters via new
backstepping strate. Nonlinear Dynamics 70: 2129–2143.
- Li, Y., S., Tong and T. Li, 2013 Adaptive fuzzy output feedback control
for asinglelink flexible robot manipulator driven DC motor
via backstepping. Nonlinear Analysis: Real World Applications
14(1): 483–494.
- Li., Z. and D. Xu, 2004 A secure communication scheme using
projective chaos synchronization. Chaos, Solitons and Fractals
22(2): 477–481.
- Ma, M., J., Zhou and J. Cai, 2012 Synchronization of different order
chaotic systems: Adaptive active vs. optimal controll. International
Journal of Modern Physics C 23(11): 1250073.
- Ojo, K.S.., A. O. O., Njah and M. Omeike, 2014 Generalized reducedorder
hybrid combination synchronization of three Josephson
junctions via backstepping technique. Nonlinear Dynamics 77:
583–595.
- Vaidyanathan, S. and A. T. Azar, 2016 Adaptive control and synchronization
of Halvorsen circulant chaotic systemsl. In Advances
in chaos theory and intelligent control 337: 225–247.
- Wu, X. and S. Li, 2012 Dynamics analysis and hybrid function
projective synchronization of a new chaotic system. Nonlinear
Dynamics 69: 1979–1994.
- Zheng, Z. and G. Hu, 2000 Generalized synchronization versus
phase synchronization. Physical Review E 62(6): 7882.
Year 2024,
Volume: 6 Issue: 4, 257 - 263, 30.11.2024
Vikash .
,
Ayub Khan
,
Khursheed Alam
References
- Chen, H., L. W. Y., Yu and M. Guo, 2021 Synchronization of a
hyperchaotic finance system. Complexityl p. 6618435.
- Khan, A. and R. Prasad, 2016 Hybrid synchronization of hyperchaotic
CAI systems via sliding mode control. Journal of Engineering
Thermophysics 25(1): 151–157.
- Khan, A. and Shikha., 2017 Hybrid function projective synchronization
of chaotic systems via adaptive control. International
Journal of Dynamics and Control 5: 1114–1121.
- Motallebzadeh, F., M., Motlagh and Z. Cherati, 2012 Synchronization
of different order chaotic systems: Adaptive active vs. optimal
control. Communications in Nonlinear Science and Numerical
Simulation 17(9): 3643–3657.
- Vaidyanathan, S., 2015 Anti-synchronization of Brusselator chemical
reaction systems via adaptive control. International Journal
of ChemTech Research 8(6): 759–768.
- Abd-Elouahab, H. N. E., M.S. and J. Wang, 2010 Chaos control
of a fractionalorder financial system. Mathematical Problems in
Engineering 2010: 270646.
- Al-Azzawi, S and A. Hasan, 2024 A new 4D hidden hyperchaotic
system with higherlargest Lyapunov exponent and its synchronization.
International Journal of Mathematics Statistics and
Computer Sciencel 2: 63–74.
- Cai, G., L. H. P., Yao and X. Fang, 2013 Adaptive full state hybrid
function projective synchronization of financial hyperchaotic
systems with uncertain parameters. Discrete and Continuous
Dynamical Systems-Series B 18(8): 2019–2028.
- Chen and G.ed., 1999 Controlling chaos and bifurcation in engineering
systems. CRC Press .
- Chen, L., Y., Chai and R. Wu, 2011 Control and synchronization
of fractional-order financial system based on linear control. Discrete
Dynamics in Nature and Society 958393: 958393.
- Chen, Y. and X. Li, 2007 Function projective synchronization between
two identical chaotic systems. International journal of
modern physics C 18(05): 883–888.
- Farivar,F., M. N. M., Aliyari Shoorehdeli and M. Teshnehlab, 2012
Chaos control and modified projective synchronization of unknown
heavy symmetric chaotic gyroscope systems via Gaussian
radial basis adaptive backstepping control. Nonllnear Dynamics
64: 1913–1941.
- Kareem, S.O., K., Ojo and A. Njah, 2012 Function projective synchronization
of identical and nonidentical modified finance and
Shimizu Morioka systems. Pramana 79: 71–79.
- Khan, A. and S. ALi, 2024 Hamilton energy, competitive modes
and ultimate bound estimation of a new3D chaotic system, and
its application in chaos synchronization. Physica Scripta 99(11):
115205.
- Koronovskii, A.A., O. S. S., Moskalenko and A. Hramov, 2013
Generalized synchronization in discrete maps. New point of
view on weak and strong synchronization. Chaos, Solitons and
Fractals 46: 12–18.
- L. M. Pecora and T. L. Carroll, 1990 A new class of chaotic circuit.
Pysical review lette 266: 821–824.
- Li, S.Y., C. L. C. K. L., Yang and T. Chiu, 2012 Adaptive synchronization
of chaotic systems with unknown parameters via new
backstepping strate. Nonlinear Dynamics 70: 2129–2143.
- Li, Y., S., Tong and T. Li, 2013 Adaptive fuzzy output feedback control
for asinglelink flexible robot manipulator driven DC motor
via backstepping. Nonlinear Analysis: Real World Applications
14(1): 483–494.
- Li., Z. and D. Xu, 2004 A secure communication scheme using
projective chaos synchronization. Chaos, Solitons and Fractals
22(2): 477–481.
- Ma, M., J., Zhou and J. Cai, 2012 Synchronization of different order
chaotic systems: Adaptive active vs. optimal controll. International
Journal of Modern Physics C 23(11): 1250073.
- Ojo, K.S.., A. O. O., Njah and M. Omeike, 2014 Generalized reducedorder
hybrid combination synchronization of three Josephson
junctions via backstepping technique. Nonlinear Dynamics 77:
583–595.
- Vaidyanathan, S. and A. T. Azar, 2016 Adaptive control and synchronization
of Halvorsen circulant chaotic systemsl. In Advances
in chaos theory and intelligent control 337: 225–247.
- Wu, X. and S. Li, 2012 Dynamics analysis and hybrid function
projective synchronization of a new chaotic system. Nonlinear
Dynamics 69: 1979–1994.
- Zheng, Z. and G. Hu, 2000 Generalized synchronization versus
phase synchronization. Physical Review E 62(6): 7882.