Research Article
BibTex RIS Cite

Chaotic Encryption Algorithm Based on Gingerbreadman Map with Adaptive Symmetry

Year 2025, Volume: 7 Issue: 1, 31 - 41
https://doi.org/10.51537/chaos.1500547

Abstract

The security of sensitive data is a crucial issue in the information age. While the existing encryption protocols cannot always guarantee the required level of security due to the rapidly increasing computational capability of attackers, developing new cryptographically strong encryption techniques is of great importance in modern computer science. One of the advanced approaches in the field of cryptography is chaos-based encryption. In this study, we propose an efficient algorithm for arbitrary multimedia data encryption using the novel finite-difference scheme with adaptive symmetry based on the Gingerbreadman chaotic map. In the experimental part of the study, we use several analysis techniques to prove the presence of chaos in the dynamics of the reported discrete map and investigate the dependence between system dynamics and symmetry coefficient. Parametric chaotic sets and the largest Lyapunov exponent plots are given to evaluate the dynamics of the investigated finite-difference model. NIST statistical tests were applied to assess the properties of the developed pseudo-random numbers generator, and correlation analysis was performed to evaluate the secrecy of the encrypted image. It is experimentally shown, that varying the symmetry coefficient can significantly increase the keyspace for the encryption algorithm based on the symmetric Gingerbreadman map. The results of this study can be used to develop encryption software, including secure text messengers or stream data ciphers.

Supporting Institution

Russian Science Foundation (RSF)

Project Number

20-79-10334

References

  • Abuturab, M. R., 2020 A superposition based multiple-image encryption using fresnel-domain high dimension chaotic phase encoding. Optics and Lasers in Engineering 129: 106038.
  • Ahmad, J. and S. O. Hwang, 2016 A secure image encryption scheme based on chaotic maps and affine transformation. Multimedia Tools and Applications 75: 13951–13976.
  • Alghamdi, Y., A. Munir, and J. Ahmad, 2022 A lightweight image encryption algorithm based on chaotic map and random substitution. Entropy 24: 1344.
  • Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16: 2129–2151.
  • Barnsley, M. F., R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen, D. Saupe, et al., 1988 Fractal patterns arising in chaotic dynamical systems. The science of fractal images pp. 137–168.
  • Butusov, D. N., A. I. Karimov, N. S. Pyko, S. A. Pyko, and M. I. Bogachev, 2018 Discrete chaotic maps obtained by symmetric integration. Physica A: Statistical Mechanics and its Applications 509: 955–970.
  • El-Latif, A. A. A., J. Ramadoss, B. Abd-El-Atty, H. S. Khalifa, and F. Nazarimehr, 2022 A novel chaos-based cryptography algorithm and its performance analysis. Mathematics 10: 2434.
  • Elgendy, F., A. M. Sarhan, T. E. Eltobely, S. F. El-Zoghdy, H. S. El-Sayed, et al., 2016 Chaos-based model for encryption and decryption of digital images. Multimedia tools and applications 75: 11529–11553.
  • Elkamchouchi, H., W. M. Salama, and Y. Abouelseoud, 2020 New video encryption schemes based on chaotic maps. IET Image Processing 14: 397–406.
  • Elmanfaloty, R. A. and E. Abou-Bakr, 2019 Random property enhancement of a 1d chaotic prng with finite precision implementation. Chaos, Solitons & Fractals 118: 134–144.
  • Foster, C. C., 1997 Drawbacks of the one-time pad. Cryptologia 21: 350–352.
  • Gafsi, M., N. Abbassi, M. A. Hajjaji, J. Malek, and A. Mtibaa, 2020 Improved chaos-based cryptosystem for medical image encryption and decryption. Scientific Programming 2020: 1–22.
  • Garcia-Bosque, M., A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea, and S. Celma, 2018 Chaos-based bitwise dynamical pseudorandom number generator on fpga. IEEE Transactions on Instrumentation and Measurement 68: 291–293.
  • Guan, Z.-H., F. Huang, and W. Guan, 2005 Chaos-based image encryption algorithm. Physics letters A 346: 153–157.
  • Henon, M., 1976 A two-dimensonal mapping with a strange attractor. Communications in Mathematical Physics 50: 376–392.
  • Hobincu, R. and O. Datcu, 2018 A novel chaos based prng targeting secret communication. In 2018 International Conference on Communications (COMM), pp. 459–462, IEEE.
  • Hu, T., Y. Liu, L.-H. Gong, and C.-J. Ouyang, 2017 An image encryption scheme combining chaos with cycle operation for dna sequences. Nonlinear Dynamics 87: 51–66.
  • Irfan, M., A. Ali, M. A. Khan, M. Ehatisham-ul Haq, S. N. Mehmood Shah, et al., 2020 Pseudorandom number generator (prng) design using hyper-chaotic modified robust logistic map (hc-mrlm). Electronics 9: 104.
  • Kanso, A., M. Ghebleh, and M. Bou Khuzam, 2022 A probabilistic chaotic image encryption scheme. Mathematics 10: 1910.
  • Karimov, A. I., D. N. Butusov, V. G. Rybin, and T. I. Karimov, 2017 The study of the modified chirikov map. In 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), pp. 341–344, IEEE.
  • Khan, M. and Z. Asghar, 2018 A novel construction of substitution box for image encryption applications with gingerbreadman chaotic map and s 8 permutation. Neural computing and applications 29: 993–999.
  • Kopets, E., V. Rybin, O. Vasilchenko, D. Butusov, P. Fedoseev, et al., 2024 Fractal tent map with application to surrogate testing. Fractal and Fractional 8: 344.
  • Li, C., D. Lin, B. Feng, J. Lü, and F. Hao, 2018 Cryptanalysis of a chaotic image encryption algorithm based on information entropy. Ieee Access 6: 75834–75842.
  • Liang, Q. and C. Zhu, 2023 A new one-dimensional chaotic map for image encryption scheme based on random dna coding. Optics & Laser Technology 160: 109033.
  • Liao, X., M. A. Hahsmi, R. Haider, et al., 2018 An efficient mixed inter-intra pixels substitution at 2bits-level for image encryption technique using dna and chaos. Optik-International Journal for Light and Electron Optics 153: 117–134.
  • Liu, H. and X.Wang, 2011 Color image encryption using spatial bitlevel permutation and high-dimension chaotic system. Optics Communications 284: 3895–3903.
  • Liu, W., K. Sun, and C. Zhu, 2016 A fast image encryption algorithm based on chaotic map. Optics and Lasers in Engineering 84: 26–36.
  • Liu, Y., Y. Luo, S. Song, L. Cao, J. Liu, et al., 2017 Counteracting dynamical degradation of digital chaotic chebyshev map via perturbation. International Journal of Bifurcation and Chaos 27: 1750033.
  • Maolood, A. T., E. K. Gbashi, and E. S. Mahmood, 2022 Novel lightweight video encryption method based on chacha20 stream cipher and hybrid chaotic map. International Journal of Electrical & Computer Engineering (2088-8708) 12.
  • Menezes, A. J., P. C. Van Oorschot, and S. A. Vanstone, 2018 Handbook of applied cryptography. CRC press.
  • Moysis, L., M. Lawnik, and C. Volos, 2023 Density-colored bifurcation diagrams—a complementary tool for chaotic map analysis. International Journal of Bifurcation and Chaos 33: 2330036.
  • Moysis, L., E. Petavratzis, C. Volos, H. Nistazakis, and I. Stouboulos, 2020 A chaotic path planning generator based on logistic map and modulo tactics. Robotics and Autonomous Systems 124: 103377.
  • Ostrovskii, V. Y., V. G. Rybin, A. I. Karimov, and D. N. Butusov, 2022 Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry. Chaos, Solitons & Fractals 165: 112794.
  • Pourasad, Y., R. Ranjbarzadeh, and A. Mardani, 2021 A new algorithm for digital image encryption based on chaos theory. Entropy 23: 341.
  • Qayyum, A., J. Ahmad, W. Boulila, S. Rubaiee, F. Masood, et al., 2020 Chaos-based confusion and diffusion of image pixels using dynamic substitution. IEEE Access 8: 140876–140895.
  • Rubinstein, R. Y. and D. P. Kroese, 2016 Simulation and the Monte Carlo method. John Wiley & Sons.
  • Rybin, V., T. Karimov, O. Bayazitov, D. Kvitko, I. Babkin, et al., 2023a Prototyping the symmetry-based chaotic communication system using microcontroller unit. Applied Sciences 13: 936.
  • Rybin, V., G. Kolev, E. Kopets, A. Dautov, A. Karimov, et al., 2022 Optimal synchronization parameters for variable symmetry discrete models of chaotic systems. In 2022 11th Mediterranean Conference on Embedded Computing (MECO), pp. 1–5, IEEE.
  • Rybin, V., D. Kvitko, T. Karimov, L. Nardo, E. Nepomuceno, et al., 2023b Estimating optimal synchronization parameters for coherent chaotic communication systems in noisy conditions. Chaos Theory and Applications pp. 141–152.
  • Sethi, J., J. Bhaumik, and A. S. Chowdhury, 2022 Chaos-based uncompressed frame level video encryption. In Proceedings of the Seventh International Conference on Mathematics and Computing: ICMC 2021, pp. 201–217, Springer.
  • Smart, N., M. Abdalla, E. Bjørstad, C. Cid, B. Gierlichs, et al., 2018 Algorithms, key size and protocols report (2018). ECRYPT—CSA, H2020-ICT-2014—Project 645421.
  • Song, C.-Y., Y.-L. Qiao, and X.-Z. Zhang, 2013 An image encryption scheme based on new spatiotemporal chaos. Optik-International Journal for Light and Electron Optics 124: 3329–3334.
  • Talhaoui, M. Z. and X. Wang, 2021 A new fractional one dimensional chaotic map and its application in high-speed image encryption. Information Sciences 550: 13–26.
  • Tutueva, A. V., A. I. Karimov, L. Moysis, C. Volos, and D. N. Butusov, 2020 Construction of one-way hash functions with increased key space using adaptive chaotic maps. Chaos, Solitons & Fractals 141: 110344.
  • ul Haq, T. and T. Shah, 2021 4d mixed chaotic system and its application to rgb image encryption using substitution-diffusion. Journal of Information Security and Applications 61: 102931.
  • Wan, Y., S. Gu, and B. Du, 2020 A new image encryption algorithm based on composite chaos and hyperchaos combined with dna coding. Entropy 22: 171.
  • Wang, L. and H. Cheng, 2019 Pseudo-random number generator based on logistic chaotic system. Entropy 21: 960.
  • Wang, S., Q. Peng, and B. Du, 2022 Chaotic color image encryption based on 4d chaotic maps and dna sequence. Optics & Laser Technology 148: 107753.
  • Wang, X. and S. Gao, 2020 Image encryption algorithm for synchronously updating boolean networks based on matrix semitensor product theory. Information sciences 507: 16–36.
  • Wang, X. and Y. Su, 2021 Image encryption based on compressed sensing and dna encoding. Signal Processing: Image Communication 95: 116246.
  • Wen, H. and Y. Lin, 2024 Cryptanalysis of an image encryption algorithm using quantum chaotic map and dna coding. Expert Systems with Applications 237: 121514.
  • Xiao, D., X. Liao, and P. Wei, 2009 Analysis and improvement of a chaos-based image encryption algorithm. Chaos, Solitons & Fractals 40: 2191–2199.
  • Zhang, Y.-Q. and X.-Y. Wang, 2014 A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Information Sciences 273: 329–351.
Year 2025, Volume: 7 Issue: 1, 31 - 41
https://doi.org/10.51537/chaos.1500547

Abstract

Project Number

20-79-10334

References

  • Abuturab, M. R., 2020 A superposition based multiple-image encryption using fresnel-domain high dimension chaotic phase encoding. Optics and Lasers in Engineering 129: 106038.
  • Ahmad, J. and S. O. Hwang, 2016 A secure image encryption scheme based on chaotic maps and affine transformation. Multimedia Tools and Applications 75: 13951–13976.
  • Alghamdi, Y., A. Munir, and J. Ahmad, 2022 A lightweight image encryption algorithm based on chaotic map and random substitution. Entropy 24: 1344.
  • Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16: 2129–2151.
  • Barnsley, M. F., R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen, D. Saupe, et al., 1988 Fractal patterns arising in chaotic dynamical systems. The science of fractal images pp. 137–168.
  • Butusov, D. N., A. I. Karimov, N. S. Pyko, S. A. Pyko, and M. I. Bogachev, 2018 Discrete chaotic maps obtained by symmetric integration. Physica A: Statistical Mechanics and its Applications 509: 955–970.
  • El-Latif, A. A. A., J. Ramadoss, B. Abd-El-Atty, H. S. Khalifa, and F. Nazarimehr, 2022 A novel chaos-based cryptography algorithm and its performance analysis. Mathematics 10: 2434.
  • Elgendy, F., A. M. Sarhan, T. E. Eltobely, S. F. El-Zoghdy, H. S. El-Sayed, et al., 2016 Chaos-based model for encryption and decryption of digital images. Multimedia tools and applications 75: 11529–11553.
  • Elkamchouchi, H., W. M. Salama, and Y. Abouelseoud, 2020 New video encryption schemes based on chaotic maps. IET Image Processing 14: 397–406.
  • Elmanfaloty, R. A. and E. Abou-Bakr, 2019 Random property enhancement of a 1d chaotic prng with finite precision implementation. Chaos, Solitons & Fractals 118: 134–144.
  • Foster, C. C., 1997 Drawbacks of the one-time pad. Cryptologia 21: 350–352.
  • Gafsi, M., N. Abbassi, M. A. Hajjaji, J. Malek, and A. Mtibaa, 2020 Improved chaos-based cryptosystem for medical image encryption and decryption. Scientific Programming 2020: 1–22.
  • Garcia-Bosque, M., A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea, and S. Celma, 2018 Chaos-based bitwise dynamical pseudorandom number generator on fpga. IEEE Transactions on Instrumentation and Measurement 68: 291–293.
  • Guan, Z.-H., F. Huang, and W. Guan, 2005 Chaos-based image encryption algorithm. Physics letters A 346: 153–157.
  • Henon, M., 1976 A two-dimensonal mapping with a strange attractor. Communications in Mathematical Physics 50: 376–392.
  • Hobincu, R. and O. Datcu, 2018 A novel chaos based prng targeting secret communication. In 2018 International Conference on Communications (COMM), pp. 459–462, IEEE.
  • Hu, T., Y. Liu, L.-H. Gong, and C.-J. Ouyang, 2017 An image encryption scheme combining chaos with cycle operation for dna sequences. Nonlinear Dynamics 87: 51–66.
  • Irfan, M., A. Ali, M. A. Khan, M. Ehatisham-ul Haq, S. N. Mehmood Shah, et al., 2020 Pseudorandom number generator (prng) design using hyper-chaotic modified robust logistic map (hc-mrlm). Electronics 9: 104.
  • Kanso, A., M. Ghebleh, and M. Bou Khuzam, 2022 A probabilistic chaotic image encryption scheme. Mathematics 10: 1910.
  • Karimov, A. I., D. N. Butusov, V. G. Rybin, and T. I. Karimov, 2017 The study of the modified chirikov map. In 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), pp. 341–344, IEEE.
  • Khan, M. and Z. Asghar, 2018 A novel construction of substitution box for image encryption applications with gingerbreadman chaotic map and s 8 permutation. Neural computing and applications 29: 993–999.
  • Kopets, E., V. Rybin, O. Vasilchenko, D. Butusov, P. Fedoseev, et al., 2024 Fractal tent map with application to surrogate testing. Fractal and Fractional 8: 344.
  • Li, C., D. Lin, B. Feng, J. Lü, and F. Hao, 2018 Cryptanalysis of a chaotic image encryption algorithm based on information entropy. Ieee Access 6: 75834–75842.
  • Liang, Q. and C. Zhu, 2023 A new one-dimensional chaotic map for image encryption scheme based on random dna coding. Optics & Laser Technology 160: 109033.
  • Liao, X., M. A. Hahsmi, R. Haider, et al., 2018 An efficient mixed inter-intra pixels substitution at 2bits-level for image encryption technique using dna and chaos. Optik-International Journal for Light and Electron Optics 153: 117–134.
  • Liu, H. and X.Wang, 2011 Color image encryption using spatial bitlevel permutation and high-dimension chaotic system. Optics Communications 284: 3895–3903.
  • Liu, W., K. Sun, and C. Zhu, 2016 A fast image encryption algorithm based on chaotic map. Optics and Lasers in Engineering 84: 26–36.
  • Liu, Y., Y. Luo, S. Song, L. Cao, J. Liu, et al., 2017 Counteracting dynamical degradation of digital chaotic chebyshev map via perturbation. International Journal of Bifurcation and Chaos 27: 1750033.
  • Maolood, A. T., E. K. Gbashi, and E. S. Mahmood, 2022 Novel lightweight video encryption method based on chacha20 stream cipher and hybrid chaotic map. International Journal of Electrical & Computer Engineering (2088-8708) 12.
  • Menezes, A. J., P. C. Van Oorschot, and S. A. Vanstone, 2018 Handbook of applied cryptography. CRC press.
  • Moysis, L., M. Lawnik, and C. Volos, 2023 Density-colored bifurcation diagrams—a complementary tool for chaotic map analysis. International Journal of Bifurcation and Chaos 33: 2330036.
  • Moysis, L., E. Petavratzis, C. Volos, H. Nistazakis, and I. Stouboulos, 2020 A chaotic path planning generator based on logistic map and modulo tactics. Robotics and Autonomous Systems 124: 103377.
  • Ostrovskii, V. Y., V. G. Rybin, A. I. Karimov, and D. N. Butusov, 2022 Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry. Chaos, Solitons & Fractals 165: 112794.
  • Pourasad, Y., R. Ranjbarzadeh, and A. Mardani, 2021 A new algorithm for digital image encryption based on chaos theory. Entropy 23: 341.
  • Qayyum, A., J. Ahmad, W. Boulila, S. Rubaiee, F. Masood, et al., 2020 Chaos-based confusion and diffusion of image pixels using dynamic substitution. IEEE Access 8: 140876–140895.
  • Rubinstein, R. Y. and D. P. Kroese, 2016 Simulation and the Monte Carlo method. John Wiley & Sons.
  • Rybin, V., T. Karimov, O. Bayazitov, D. Kvitko, I. Babkin, et al., 2023a Prototyping the symmetry-based chaotic communication system using microcontroller unit. Applied Sciences 13: 936.
  • Rybin, V., G. Kolev, E. Kopets, A. Dautov, A. Karimov, et al., 2022 Optimal synchronization parameters for variable symmetry discrete models of chaotic systems. In 2022 11th Mediterranean Conference on Embedded Computing (MECO), pp. 1–5, IEEE.
  • Rybin, V., D. Kvitko, T. Karimov, L. Nardo, E. Nepomuceno, et al., 2023b Estimating optimal synchronization parameters for coherent chaotic communication systems in noisy conditions. Chaos Theory and Applications pp. 141–152.
  • Sethi, J., J. Bhaumik, and A. S. Chowdhury, 2022 Chaos-based uncompressed frame level video encryption. In Proceedings of the Seventh International Conference on Mathematics and Computing: ICMC 2021, pp. 201–217, Springer.
  • Smart, N., M. Abdalla, E. Bjørstad, C. Cid, B. Gierlichs, et al., 2018 Algorithms, key size and protocols report (2018). ECRYPT—CSA, H2020-ICT-2014—Project 645421.
  • Song, C.-Y., Y.-L. Qiao, and X.-Z. Zhang, 2013 An image encryption scheme based on new spatiotemporal chaos. Optik-International Journal for Light and Electron Optics 124: 3329–3334.
  • Talhaoui, M. Z. and X. Wang, 2021 A new fractional one dimensional chaotic map and its application in high-speed image encryption. Information Sciences 550: 13–26.
  • Tutueva, A. V., A. I. Karimov, L. Moysis, C. Volos, and D. N. Butusov, 2020 Construction of one-way hash functions with increased key space using adaptive chaotic maps. Chaos, Solitons & Fractals 141: 110344.
  • ul Haq, T. and T. Shah, 2021 4d mixed chaotic system and its application to rgb image encryption using substitution-diffusion. Journal of Information Security and Applications 61: 102931.
  • Wan, Y., S. Gu, and B. Du, 2020 A new image encryption algorithm based on composite chaos and hyperchaos combined with dna coding. Entropy 22: 171.
  • Wang, L. and H. Cheng, 2019 Pseudo-random number generator based on logistic chaotic system. Entropy 21: 960.
  • Wang, S., Q. Peng, and B. Du, 2022 Chaotic color image encryption based on 4d chaotic maps and dna sequence. Optics & Laser Technology 148: 107753.
  • Wang, X. and S. Gao, 2020 Image encryption algorithm for synchronously updating boolean networks based on matrix semitensor product theory. Information sciences 507: 16–36.
  • Wang, X. and Y. Su, 2021 Image encryption based on compressed sensing and dna encoding. Signal Processing: Image Communication 95: 116246.
  • Wen, H. and Y. Lin, 2024 Cryptanalysis of an image encryption algorithm using quantum chaotic map and dna coding. Expert Systems with Applications 237: 121514.
  • Xiao, D., X. Liao, and P. Wei, 2009 Analysis and improvement of a chaos-based image encryption algorithm. Chaos, Solitons & Fractals 40: 2191–2199.
  • Zhang, Y.-Q. and X.-Y. Wang, 2014 A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Information Sciences 273: 329–351.
There are 53 citations in total.

Details

Primary Language English
Subjects Cybersecurity and Privacy (Other), Dynamical Systems in Applications, Applied Mathematics (Other)
Journal Section Research Articles
Authors

Petr Fedoseev 0000-0001-9878-4568

Dmitry Pesterev 0000-0001-5119-2274

Vladislav Rozhkov 0009-0005-7107-8512

Vyacheslav Rybin 0000-0002-6515-0224

Denis Butusov 0000-0002-8941-4220

Project Number 20-79-10334
Publication Date
Submission Date June 13, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Fedoseev, P., Pesterev, D., Rozhkov, V., Rybin, V., et al. (n.d.). Chaotic Encryption Algorithm Based on Gingerbreadman Map with Adaptive Symmetry. Chaos Theory and Applications, 7(1), 31-41. https://doi.org/10.51537/chaos.1500547

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg