Research Article
BibTex RIS Cite

Suppression of Catastrophic Motion and Horseshoes Chaos on a Mechanical Structure using Opto-Electromechanicals Devices

Year 2025, Volume: 7 Issue: 1, 42 - 49
https://doi.org/10.51537/chaos.1514635

Abstract

We investigate in this paper the dynamic performance of an opto-electromechanicals control technics on a structure modelled by beam with degenerated ${\phi ^6}$ potential. The mathematical model of the structure under control has been derived. The dynamics response are explored using harmonic balance methods. The ability to dissipate the undesired vibrations of a these structures to an acceptable level is theoretically examined by derived the condition of escape from the potential well as well as the criteria for the occurrence of horseshoes chaos on the physical system. The effects of the appropriate control parameter leading to optimal control is explored. It appear globally that opto-electromechanical device is a good candidate of horseshoes chaos suppression on mechanical structure

Ethical Statement

The authors declare no conflict of interest in preparing this article.

References

  • Aida, T., K. Kawazoe, and S. Toda, 1995 Vibration control of plates by plate-type dynamic vibration absorbers. J. Vib. Acoust 117: 332–338.
  • Ballarini, R. and B. Euler, 2003 Beam theory. Magazine Online, Accessed: [October 2024].
  • Carlioz, L., 2009 Générateur Piézoélectrique à Déclenchement Thermomagnetique. Phd thesis, Institut Polytechnique de Grenoble, France.
  • Cheng, A., C. Yang, K. Hackl, and M. Chajes, 1993 Stability, bifurcation and chaos of non-linear structures with control ii. non autonomous case. Int. J. Non-Linear Mech 28: 549–565.
  • Fukuda, T., S. Hattori, F. Arai, H. Matsuura, T. Hiramatsu, et al., 1993 Characteristics of optical actuator – servomechanisms using bimorph optical piezoelectric actuator. In Proceedings of 1993 IEEE Robotics and Automation Conference, pp. 618–623.
  • Hackl, K., C. Yang, and A.-D. Cheng, 1993 Stability, bifurcation and chaos of non-linear structures with control i. autonomous case. Int. J. Non-Linear Mech 28: 441–454.
  • Liu, B. and H. Tzou, 1998a Distributed photostrictive actuator and opto-piezothermoelasticity applied to vibration control of plates. Journal of Vibration and Acoustics 120: 936–943.
  • Liu, B. and H. S. Tzou, 1998b Distributed photostrictive actuation and opto-piezothermoelasticity applied to vibration control of plates. Journal of Vibration and Acoustics 120: 937–943.
  • Metsebo, J., B. Abdou, D. T. Ngatcha, I. K. Ngongiah, P. D. K. Kuate, et al., 2024 Analysis of a resistive-capacitive shunted josephson junction with topologically nontrivial barrier coupled to a rlc resonator. Chaos and Fractals 1: 31–37.
  • Moon, F., 1992 Chaotic and Fractal Dynamics. Wiley, New York.
  • Nana Nbendjo, B., R. Tchoukuegno, and P.Woafo, 2003 Active control with delay of vibration and chaos in a double well duffing oscillator. Chaos, Solitons & Fractals 18: 345.
  • Nana Nbendjo, B. and P. Woafo, 2007 Active control with delay of horseshoes chaos using piezoelectric absorber on a buckled beam under parametric excitation. Chaos, Solitons & Fractals 32: 73.
  • Nana Nbendjo, B. R., 2004 Dynamics and active control with delay of the dynamics of unbounded monostable mechanical structures. Ph.D. thesis, University of Yaoundé I.
  • Ngatcha, D. T., B. P. Ndemanou, A. F. Talla, S. G. N. Mbouna, and S. T. Kingni, 2024 Numerical exploration of a network of nonlocally coupled josephson junction spurred by wien bridge oscillators. Chaos and Fractals 1: 1–5.
  • Okada, Y., K. Matsuda, and H. Hashitani, 1995 Self-sensing active vibration control using the moving-coil-type actuator. J. Vib. Acoust 117: 411–415.
  • Pinto, O. and P. Goncalves, 2002 Active non-linear control of buckling and vibrations of a flexible buckled beam. Chaos, Solitons & Fractals 14: 227–239.
  • Shih, H., H. Tzou, and M. Saypuri, 2005 Structural vibration control using specially configured opto-electromechanical actuators. Journal of Sound and Vibration 284: 361–378.
  • Shih, H.-R., 2000 Distributed vibration sensing and control of a piezoelectric laminated curved beam. Journal of Smart Materials and Structures 9: 761–766.
  • Shih, H.-R. and H. S. Tzou, 2000 Opto-piezothermoelastic constitutive modeling of a new 2-d photostrictive composite plate actuator. In Proceedings of ASME IMECE, volume 61, pp. 1–8.
  • Sonfack, H., 2011 Dynamique et Contrôle par Sandwich des Vibrations d’une Plaque sous Excitation Impulsive Périodique Localisée. Mémoire de fin d’études, Université de Yaoundé I, Ecole Normale Supérieure, Cameroun, Présenté en vue de l’obtention du grade de Professeur de Lycée d’Enseignement Général.
  • Timoshenko, S., 1966 Théorie de la stabilité élastique. Imprimerie Jouve, Paris.
  • Tzou, H. and C. Chou, 1996 Nonlinear opto-electromechanics and photodeformation of optical actuators. Journal of Smart Material and Structure 5: 230–235.
  • Tzou, H. S. and G. L. Anderson, 1992 Intelligent Structural Systems. Kluwer Academic Publishers, Boston.
  • Uchino, K., 1996 Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers, Boston.
  • Wang, S., S. Quek, and K. Ang, 2001 Vibration control of smart piezoelectric composite plates. Journal of Smart Materials and Structures 10: 637–644.
Year 2025, Volume: 7 Issue: 1, 42 - 49
https://doi.org/10.51537/chaos.1514635

Abstract

References

  • Aida, T., K. Kawazoe, and S. Toda, 1995 Vibration control of plates by plate-type dynamic vibration absorbers. J. Vib. Acoust 117: 332–338.
  • Ballarini, R. and B. Euler, 2003 Beam theory. Magazine Online, Accessed: [October 2024].
  • Carlioz, L., 2009 Générateur Piézoélectrique à Déclenchement Thermomagnetique. Phd thesis, Institut Polytechnique de Grenoble, France.
  • Cheng, A., C. Yang, K. Hackl, and M. Chajes, 1993 Stability, bifurcation and chaos of non-linear structures with control ii. non autonomous case. Int. J. Non-Linear Mech 28: 549–565.
  • Fukuda, T., S. Hattori, F. Arai, H. Matsuura, T. Hiramatsu, et al., 1993 Characteristics of optical actuator – servomechanisms using bimorph optical piezoelectric actuator. In Proceedings of 1993 IEEE Robotics and Automation Conference, pp. 618–623.
  • Hackl, K., C. Yang, and A.-D. Cheng, 1993 Stability, bifurcation and chaos of non-linear structures with control i. autonomous case. Int. J. Non-Linear Mech 28: 441–454.
  • Liu, B. and H. Tzou, 1998a Distributed photostrictive actuator and opto-piezothermoelasticity applied to vibration control of plates. Journal of Vibration and Acoustics 120: 936–943.
  • Liu, B. and H. S. Tzou, 1998b Distributed photostrictive actuation and opto-piezothermoelasticity applied to vibration control of plates. Journal of Vibration and Acoustics 120: 937–943.
  • Metsebo, J., B. Abdou, D. T. Ngatcha, I. K. Ngongiah, P. D. K. Kuate, et al., 2024 Analysis of a resistive-capacitive shunted josephson junction with topologically nontrivial barrier coupled to a rlc resonator. Chaos and Fractals 1: 31–37.
  • Moon, F., 1992 Chaotic and Fractal Dynamics. Wiley, New York.
  • Nana Nbendjo, B., R. Tchoukuegno, and P.Woafo, 2003 Active control with delay of vibration and chaos in a double well duffing oscillator. Chaos, Solitons & Fractals 18: 345.
  • Nana Nbendjo, B. and P. Woafo, 2007 Active control with delay of horseshoes chaos using piezoelectric absorber on a buckled beam under parametric excitation. Chaos, Solitons & Fractals 32: 73.
  • Nana Nbendjo, B. R., 2004 Dynamics and active control with delay of the dynamics of unbounded monostable mechanical structures. Ph.D. thesis, University of Yaoundé I.
  • Ngatcha, D. T., B. P. Ndemanou, A. F. Talla, S. G. N. Mbouna, and S. T. Kingni, 2024 Numerical exploration of a network of nonlocally coupled josephson junction spurred by wien bridge oscillators. Chaos and Fractals 1: 1–5.
  • Okada, Y., K. Matsuda, and H. Hashitani, 1995 Self-sensing active vibration control using the moving-coil-type actuator. J. Vib. Acoust 117: 411–415.
  • Pinto, O. and P. Goncalves, 2002 Active non-linear control of buckling and vibrations of a flexible buckled beam. Chaos, Solitons & Fractals 14: 227–239.
  • Shih, H., H. Tzou, and M. Saypuri, 2005 Structural vibration control using specially configured opto-electromechanical actuators. Journal of Sound and Vibration 284: 361–378.
  • Shih, H.-R., 2000 Distributed vibration sensing and control of a piezoelectric laminated curved beam. Journal of Smart Materials and Structures 9: 761–766.
  • Shih, H.-R. and H. S. Tzou, 2000 Opto-piezothermoelastic constitutive modeling of a new 2-d photostrictive composite plate actuator. In Proceedings of ASME IMECE, volume 61, pp. 1–8.
  • Sonfack, H., 2011 Dynamique et Contrôle par Sandwich des Vibrations d’une Plaque sous Excitation Impulsive Périodique Localisée. Mémoire de fin d’études, Université de Yaoundé I, Ecole Normale Supérieure, Cameroun, Présenté en vue de l’obtention du grade de Professeur de Lycée d’Enseignement Général.
  • Timoshenko, S., 1966 Théorie de la stabilité élastique. Imprimerie Jouve, Paris.
  • Tzou, H. and C. Chou, 1996 Nonlinear opto-electromechanics and photodeformation of optical actuators. Journal of Smart Material and Structure 5: 230–235.
  • Tzou, H. S. and G. L. Anderson, 1992 Intelligent Structural Systems. Kluwer Academic Publishers, Boston.
  • Uchino, K., 1996 Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers, Boston.
  • Wang, S., S. Quek, and K. Ang, 2001 Vibration control of smart piezoelectric composite plates. Journal of Smart Materials and Structures 10: 637–644.
There are 25 citations in total.

Details

Primary Language English
Subjects Calculus of Variations, Mathematical Aspects of Systems Theory and Control Theory, Control Engineering, Mechatronics and Robotics (Other)
Journal Section Research Articles
Authors

Daniel Junior Lissan 1er 0000-0001-8668-798X

Sanda Oumarou 0000-0002-8386-1708

Blaise Romeo Nana Nbendjo 0000-0001-7331-1115

Publication Date
Submission Date July 11, 2024
Acceptance Date October 19, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Lissan 1er, D. J., Oumarou, S., & Nana Nbendjo, B. R. (n.d.). Suppression of Catastrophic Motion and Horseshoes Chaos on a Mechanical Structure using Opto-Electromechanicals Devices. Chaos Theory and Applications, 7(1), 42-49. https://doi.org/10.51537/chaos.1514635

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg