Suppression of Catastrophic Motion and Horseshoes Chaos on a Mechanical Structure using Opto-Electromechanicals Devices
Year 2025,
Volume: 7 Issue: 1, 42 - 49
Daniel Junior Lissan 1er
,
Sanda Oumarou
,
Blaise Romeo Nana Nbendjo
Abstract
We investigate in this paper the dynamic performance of an opto-electromechanicals control technics on a structure modelled by beam with degenerated ${\phi ^6}$ potential. The mathematical model of the structure under control has been derived. The dynamics response are explored using harmonic balance methods. The ability to dissipate the undesired vibrations of a these structures to an acceptable level is theoretically examined by derived the condition of escape from the potential well as well as the criteria for the occurrence of horseshoes chaos on the physical system. The effects of the appropriate control parameter leading to optimal control is explored. It appear globally that opto-electromechanical device is a good candidate of horseshoes chaos suppression on mechanical structure
Ethical Statement
The authors declare no conflict of interest in preparing this article.
References
- Aida, T., K. Kawazoe, and S. Toda, 1995 Vibration control of plates
by plate-type dynamic vibration absorbers. J. Vib. Acoust 117:
332–338.
- Ballarini, R. and B. Euler, 2003 Beam theory. Magazine Online,
Accessed: [October 2024].
- Carlioz, L., 2009 Générateur Piézoélectrique à Déclenchement Thermomagnetique.
Phd thesis, Institut Polytechnique de Grenoble,
France.
- Cheng, A., C. Yang, K. Hackl, and M. Chajes, 1993 Stability, bifurcation
and chaos of non-linear structures with control ii. non
autonomous case. Int. J. Non-Linear Mech 28: 549–565.
- Fukuda, T., S. Hattori, F. Arai, H. Matsuura, T. Hiramatsu, et al.,
1993 Characteristics of optical actuator – servomechanisms using
bimorph optical piezoelectric actuator. In Proceedings of 1993
IEEE Robotics and Automation Conference, pp. 618–623.
- Hackl, K., C. Yang, and A.-D. Cheng, 1993 Stability, bifurcation
and chaos of non-linear structures with control i. autonomous
case. Int. J. Non-Linear Mech 28: 441–454.
- Liu, B. and H. Tzou, 1998a Distributed photostrictive actuator and
opto-piezothermoelasticity applied to vibration control of plates.
Journal of Vibration and Acoustics 120: 936–943.
- Liu, B. and H. S. Tzou, 1998b Distributed photostrictive actuation
and opto-piezothermoelasticity applied to vibration control of
plates. Journal of Vibration and Acoustics 120: 937–943.
- Metsebo, J., B. Abdou, D. T. Ngatcha, I. K. Ngongiah, P. D. K. Kuate,
et al., 2024 Analysis of a resistive-capacitive shunted josephson
junction with topologically nontrivial barrier coupled to a rlc
resonator. Chaos and Fractals 1: 31–37.
- Moon, F., 1992 Chaotic and Fractal Dynamics. Wiley, New York.
- Nana Nbendjo, B., R. Tchoukuegno, and P.Woafo, 2003 Active control
with delay of vibration and chaos in a double well duffing
oscillator. Chaos, Solitons & Fractals 18: 345.
- Nana Nbendjo, B. and P. Woafo, 2007 Active control with delay
of horseshoes chaos using piezoelectric absorber on a buckled
beam under parametric excitation. Chaos, Solitons & Fractals 32:
73.
- Nana Nbendjo, B. R., 2004 Dynamics and active control with delay of
the dynamics of unbounded monostable mechanical structures. Ph.D.
thesis, University of Yaoundé I.
- Ngatcha, D. T., B. P. Ndemanou, A. F. Talla, S. G. N. Mbouna,
and S. T. Kingni, 2024 Numerical exploration of a network of
nonlocally coupled josephson junction spurred by wien bridge
oscillators. Chaos and Fractals 1: 1–5.
- Okada, Y., K. Matsuda, and H. Hashitani, 1995 Self-sensing active
vibration control using the moving-coil-type actuator. J. Vib.
Acoust 117: 411–415.
- Pinto, O. and P. Goncalves, 2002 Active non-linear control of buckling
and vibrations of a flexible buckled beam. Chaos, Solitons
& Fractals 14: 227–239.
- Shih, H., H. Tzou, and M. Saypuri, 2005 Structural vibration control
using specially configured opto-electromechanical actuators.
Journal of Sound and Vibration 284: 361–378.
- Shih, H.-R., 2000 Distributed vibration sensing and control of a
piezoelectric laminated curved beam. Journal of Smart Materials
and Structures 9: 761–766.
- Shih, H.-R. and H. S. Tzou, 2000 Opto-piezothermoelastic constitutive
modeling of a new 2-d photostrictive composite plate
actuator. In Proceedings of ASME IMECE, volume 61, pp. 1–8.
- Sonfack, H., 2011 Dynamique et Contrôle par Sandwich des Vibrations
d’une Plaque sous Excitation Impulsive Périodique Localisée. Mémoire
de fin d’études, Université de Yaoundé I, Ecole Normale
Supérieure, Cameroun, Présenté en vue de l’obtention du grade
de Professeur de Lycée d’Enseignement Général.
- Timoshenko, S., 1966 Théorie de la stabilité élastique. Imprimerie
Jouve, Paris.
- Tzou, H. and C. Chou, 1996 Nonlinear opto-electromechanics and
photodeformation of optical actuators. Journal of Smart Material
and Structure 5: 230–235.
- Tzou, H. S. and G. L. Anderson, 1992 Intelligent Structural Systems.
Kluwer Academic Publishers, Boston.
- Uchino, K., 1996 Piezoelectric Actuators and Ultrasonic Motors.
Kluwer Academic Publishers, Boston.
- Wang, S., S. Quek, and K. Ang, 2001 Vibration control of smart
piezoelectric composite plates. Journal of Smart Materials and
Structures 10: 637–644.
Year 2025,
Volume: 7 Issue: 1, 42 - 49
Daniel Junior Lissan 1er
,
Sanda Oumarou
,
Blaise Romeo Nana Nbendjo
References
- Aida, T., K. Kawazoe, and S. Toda, 1995 Vibration control of plates
by plate-type dynamic vibration absorbers. J. Vib. Acoust 117:
332–338.
- Ballarini, R. and B. Euler, 2003 Beam theory. Magazine Online,
Accessed: [October 2024].
- Carlioz, L., 2009 Générateur Piézoélectrique à Déclenchement Thermomagnetique.
Phd thesis, Institut Polytechnique de Grenoble,
France.
- Cheng, A., C. Yang, K. Hackl, and M. Chajes, 1993 Stability, bifurcation
and chaos of non-linear structures with control ii. non
autonomous case. Int. J. Non-Linear Mech 28: 549–565.
- Fukuda, T., S. Hattori, F. Arai, H. Matsuura, T. Hiramatsu, et al.,
1993 Characteristics of optical actuator – servomechanisms using
bimorph optical piezoelectric actuator. In Proceedings of 1993
IEEE Robotics and Automation Conference, pp. 618–623.
- Hackl, K., C. Yang, and A.-D. Cheng, 1993 Stability, bifurcation
and chaos of non-linear structures with control i. autonomous
case. Int. J. Non-Linear Mech 28: 441–454.
- Liu, B. and H. Tzou, 1998a Distributed photostrictive actuator and
opto-piezothermoelasticity applied to vibration control of plates.
Journal of Vibration and Acoustics 120: 936–943.
- Liu, B. and H. S. Tzou, 1998b Distributed photostrictive actuation
and opto-piezothermoelasticity applied to vibration control of
plates. Journal of Vibration and Acoustics 120: 937–943.
- Metsebo, J., B. Abdou, D. T. Ngatcha, I. K. Ngongiah, P. D. K. Kuate,
et al., 2024 Analysis of a resistive-capacitive shunted josephson
junction with topologically nontrivial barrier coupled to a rlc
resonator. Chaos and Fractals 1: 31–37.
- Moon, F., 1992 Chaotic and Fractal Dynamics. Wiley, New York.
- Nana Nbendjo, B., R. Tchoukuegno, and P.Woafo, 2003 Active control
with delay of vibration and chaos in a double well duffing
oscillator. Chaos, Solitons & Fractals 18: 345.
- Nana Nbendjo, B. and P. Woafo, 2007 Active control with delay
of horseshoes chaos using piezoelectric absorber on a buckled
beam under parametric excitation. Chaos, Solitons & Fractals 32:
73.
- Nana Nbendjo, B. R., 2004 Dynamics and active control with delay of
the dynamics of unbounded monostable mechanical structures. Ph.D.
thesis, University of Yaoundé I.
- Ngatcha, D. T., B. P. Ndemanou, A. F. Talla, S. G. N. Mbouna,
and S. T. Kingni, 2024 Numerical exploration of a network of
nonlocally coupled josephson junction spurred by wien bridge
oscillators. Chaos and Fractals 1: 1–5.
- Okada, Y., K. Matsuda, and H. Hashitani, 1995 Self-sensing active
vibration control using the moving-coil-type actuator. J. Vib.
Acoust 117: 411–415.
- Pinto, O. and P. Goncalves, 2002 Active non-linear control of buckling
and vibrations of a flexible buckled beam. Chaos, Solitons
& Fractals 14: 227–239.
- Shih, H., H. Tzou, and M. Saypuri, 2005 Structural vibration control
using specially configured opto-electromechanical actuators.
Journal of Sound and Vibration 284: 361–378.
- Shih, H.-R., 2000 Distributed vibration sensing and control of a
piezoelectric laminated curved beam. Journal of Smart Materials
and Structures 9: 761–766.
- Shih, H.-R. and H. S. Tzou, 2000 Opto-piezothermoelastic constitutive
modeling of a new 2-d photostrictive composite plate
actuator. In Proceedings of ASME IMECE, volume 61, pp. 1–8.
- Sonfack, H., 2011 Dynamique et Contrôle par Sandwich des Vibrations
d’une Plaque sous Excitation Impulsive Périodique Localisée. Mémoire
de fin d’études, Université de Yaoundé I, Ecole Normale
Supérieure, Cameroun, Présenté en vue de l’obtention du grade
de Professeur de Lycée d’Enseignement Général.
- Timoshenko, S., 1966 Théorie de la stabilité élastique. Imprimerie
Jouve, Paris.
- Tzou, H. and C. Chou, 1996 Nonlinear opto-electromechanics and
photodeformation of optical actuators. Journal of Smart Material
and Structure 5: 230–235.
- Tzou, H. S. and G. L. Anderson, 1992 Intelligent Structural Systems.
Kluwer Academic Publishers, Boston.
- Uchino, K., 1996 Piezoelectric Actuators and Ultrasonic Motors.
Kluwer Academic Publishers, Boston.
- Wang, S., S. Quek, and K. Ang, 2001 Vibration control of smart
piezoelectric composite plates. Journal of Smart Materials and
Structures 10: 637–644.