Universal Orbits: Unveiling the Connection between Chaotic Dynamics, Normal Numbers, and Neurochaos Learning
Year 2025,
Volume: 7 Issue: 1, 61 - 69
Akhila Henry
,
Nithin Nagaraj
,
Rajan Sundaravaradhan
Abstract
This study explores the realm of chaotic dynamics, Neurochaos Learning (a brain-inspired machine learning paradigm) and Normal numbers, focusing on the introduction of a novel chaotic trajectory termed the Universal Orbit. The study investigates the characteristics and generation of universal orbits within two prominent chaotic maps: the Decimal Shift Map and the Gauss Map. It explores the set of points capable of forming such orbits, revealing connections with normal numbers and continued fractions. Points within the interval (0, 1) can produce universal orbits under specific conditions, highlighting the intricate relationship between machine learning, chaotic dynamics and number theory. While not all points forming universal orbits are normal numbers, the trajectory of a normal number may represent a universal orbit (under certain conditions). When employing the universal orbit for feature extraction in Neurochaos Learning, the firing time feature can be interpreted by establishing an upper bound and examining its trend. Future research aims to identify sets of points producing universal orbits under various chaotic maps, intending to enhance the performance of algorithms like the Neurochaos Learning algorithm. This study contributes to advancing our understanding of chaotic systems and their applications in artificial intelligence.
References
- Adler, R., M. Keane, and M. Smorodinsky, 1981 A construction
of a normal number for the continued fraction transformation.
Journal of Number Theory 13: 95–105.
- Alligood, K. T., T. D. Sauer, J. A. Yorke, and D. Chillingworth, 1998
Chaos: an introduction to dynamical systems. SIAM Review 40:
732–732.
- Badillo, S., B. Banfai, F. Birzele, I. I. Davydov, L. Hutchinson, et al.,
2020 An introduction to machine learning. Clinical pharmacology
& therapeutics 107: 871–885.
- Bailey, D. H., J. M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu,
et al., 2012 Normality and the digits of pi. Exp.
Math.(2012, to appear), available at http://crd-legacy. lbl. gov/˜
dhbailey/dhbpapers/normality. pdf .
- Bailey, D. H. and R. E. Crandall, 2001 On the random character of
fundamental constant expansions. Experimental Mathematics
10: 175–190.
- Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019
Chaosnet: A chaos based artificial neural network architecture
for classification. Chaos: An Interdisciplinary Journal of Nonlinear
Science 29.
- Bates, B., M. Bunder, and K. Tognetti, 2005 Continued fractions
and the gauss map. Acta Mathematica Academiae Paedagogicae
Nyíregyháziensis 21: 113–125.
- Bau, H. H., Y. Shachmurove, et al., 2002 Chaos Theory and its Application.
University of Pennsylvania, Center for Analytic Research
in Economics and the Social Sciences, Philadelphia.
- Becher, V. and S. A. Yuhjtman, 2019 On absolutely normal and
continued fraction normal numbers. International Mathematics
Research Notices 2019: 6136–6161.
- Biswas, H. R., M. M. Hasan, and S. K. Bala, 2018 Chaos theory and
its applications in our real life. Barishal University Journal Part
1: 123–140.
- Borel, É., 1950 Sur les chiffres décimaux de
√
2 et divers problemes
de probabilités en chaıne. CR Acad. Sci. Paris 230: 591–593.
- Champernowne, D. G., 1933 The construction of decimals normal
in the scale of ten. Journal of the London Mathematical Society
1: 254–260.
- Copeland, A. H. and P. Erdös, 1946 Note on normal numbers. Bull.
Amer. Math. Soc. 52: 857–860.
- Corless, R. M., 1992 Continued fractions and chaos. The American
mathematical monthly 99: 203–215.
- Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers, volume
29. American Mathematical Soc.,Washington,DC.
- Devaney, R. L., 2018 A first course in chaotic dynamical systems: theory
and experiment. CRC Press, Taylor & Francis Group.
- Émile Borel, M., 1909 Les probabilités dénombrables et leurs applications
arithmétiques. Rendiconti del Circolo Matematico di
Palermo (1884-1940) 27: 247–271.
- Fan, S., 1946 The copeland-erd˝os theorem on normal numbers.
Available at https://math.dartmouth.edu/~stevefan/research.html.
- Faure, P. and H. Korn, 2001 Is there chaos in the brain? i. concepts
of nonlinear dynamics and methods of investigation. Comptes
Rendus de l’Académie des Sciences-Series III-Sciences de la Vie
324: 773–793.
- Harikrishnan, N. and N. Nagaraj, 2020 Neurochaos inspired hybrid
machine learning architecture for classification. In 2020
International Conference on Signal Processing and Communications
(SPCOM), pp. 1–5, IEEE.
- Harikrishnan, N., S. Pranay, and N. Nagaraj, 2022 Classification of
sars-cov-2 viral genome sequences using neurochaos learning.
Medical & Biological Engineering & Computing 60: 2245–2255.
- Harikrishnan, N. B. and N. Nagaraj, 2019 A novel chaos theory
inspired neuronal architecture. In 2019 Global Conference for Advancement
in Technology (GCAT), pp. 1–6, IEEE.
- Harikrishnan, N. B. and N. Nagaraj, 2021 When noise meets chaos:
Stochastic resonance in neurochaos learning. Neural Networks
143: 425–435.
- Khona, M. and I. R. Fiete, 2022 Attractor and integrator networks
in the brain. Nature Reviews Neuroscience 23: 744–766.
- Khoshnevisan, D., 2006 On the normality of normal numbers. Clay
Mathematics Institute Annual Report.
- Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental
evidence and related models. Comptes rendus biologies
326: 787–840.
- Olds, C. D., 1963 Continued Fractions. Random House and L.W.
Singer Company, New York.
- Pomstra, G., 2018 The Constant of Champernowne. Ph.D. thesis, University
of Groningen.
- Sethi, D., N. Nagaraj, and N. B. Harikrishnan, 2023 Neurochaos
feature transformation for machine learning. Integration 90: 157–
162.
- Skarda, C. A. andW. J. Freeman, 1990 Chaos and the new science
of the brain. Concepts in neuroscience 1: 275–285.
- Strogatz, S. H., 2018 Nonlinear dynamics and chaos with student solutions
manual: With applications to physics, biology, chemistry, and
engineering. CRC press, Taylor & Francis Group.
- Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics.
Current opinion in neurobiology 31: 67–71.
Year 2025,
Volume: 7 Issue: 1, 61 - 69
Akhila Henry
,
Nithin Nagaraj
,
Rajan Sundaravaradhan
References
- Adler, R., M. Keane, and M. Smorodinsky, 1981 A construction
of a normal number for the continued fraction transformation.
Journal of Number Theory 13: 95–105.
- Alligood, K. T., T. D. Sauer, J. A. Yorke, and D. Chillingworth, 1998
Chaos: an introduction to dynamical systems. SIAM Review 40:
732–732.
- Badillo, S., B. Banfai, F. Birzele, I. I. Davydov, L. Hutchinson, et al.,
2020 An introduction to machine learning. Clinical pharmacology
& therapeutics 107: 871–885.
- Bailey, D. H., J. M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu,
et al., 2012 Normality and the digits of pi. Exp.
Math.(2012, to appear), available at http://crd-legacy. lbl. gov/˜
dhbailey/dhbpapers/normality. pdf .
- Bailey, D. H. and R. E. Crandall, 2001 On the random character of
fundamental constant expansions. Experimental Mathematics
10: 175–190.
- Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019
Chaosnet: A chaos based artificial neural network architecture
for classification. Chaos: An Interdisciplinary Journal of Nonlinear
Science 29.
- Bates, B., M. Bunder, and K. Tognetti, 2005 Continued fractions
and the gauss map. Acta Mathematica Academiae Paedagogicae
Nyíregyháziensis 21: 113–125.
- Bau, H. H., Y. Shachmurove, et al., 2002 Chaos Theory and its Application.
University of Pennsylvania, Center for Analytic Research
in Economics and the Social Sciences, Philadelphia.
- Becher, V. and S. A. Yuhjtman, 2019 On absolutely normal and
continued fraction normal numbers. International Mathematics
Research Notices 2019: 6136–6161.
- Biswas, H. R., M. M. Hasan, and S. K. Bala, 2018 Chaos theory and
its applications in our real life. Barishal University Journal Part
1: 123–140.
- Borel, É., 1950 Sur les chiffres décimaux de
√
2 et divers problemes
de probabilités en chaıne. CR Acad. Sci. Paris 230: 591–593.
- Champernowne, D. G., 1933 The construction of decimals normal
in the scale of ten. Journal of the London Mathematical Society
1: 254–260.
- Copeland, A. H. and P. Erdös, 1946 Note on normal numbers. Bull.
Amer. Math. Soc. 52: 857–860.
- Corless, R. M., 1992 Continued fractions and chaos. The American
mathematical monthly 99: 203–215.
- Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers, volume
29. American Mathematical Soc.,Washington,DC.
- Devaney, R. L., 2018 A first course in chaotic dynamical systems: theory
and experiment. CRC Press, Taylor & Francis Group.
- Émile Borel, M., 1909 Les probabilités dénombrables et leurs applications
arithmétiques. Rendiconti del Circolo Matematico di
Palermo (1884-1940) 27: 247–271.
- Fan, S., 1946 The copeland-erd˝os theorem on normal numbers.
Available at https://math.dartmouth.edu/~stevefan/research.html.
- Faure, P. and H. Korn, 2001 Is there chaos in the brain? i. concepts
of nonlinear dynamics and methods of investigation. Comptes
Rendus de l’Académie des Sciences-Series III-Sciences de la Vie
324: 773–793.
- Harikrishnan, N. and N. Nagaraj, 2020 Neurochaos inspired hybrid
machine learning architecture for classification. In 2020
International Conference on Signal Processing and Communications
(SPCOM), pp. 1–5, IEEE.
- Harikrishnan, N., S. Pranay, and N. Nagaraj, 2022 Classification of
sars-cov-2 viral genome sequences using neurochaos learning.
Medical & Biological Engineering & Computing 60: 2245–2255.
- Harikrishnan, N. B. and N. Nagaraj, 2019 A novel chaos theory
inspired neuronal architecture. In 2019 Global Conference for Advancement
in Technology (GCAT), pp. 1–6, IEEE.
- Harikrishnan, N. B. and N. Nagaraj, 2021 When noise meets chaos:
Stochastic resonance in neurochaos learning. Neural Networks
143: 425–435.
- Khona, M. and I. R. Fiete, 2022 Attractor and integrator networks
in the brain. Nature Reviews Neuroscience 23: 744–766.
- Khoshnevisan, D., 2006 On the normality of normal numbers. Clay
Mathematics Institute Annual Report.
- Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental
evidence and related models. Comptes rendus biologies
326: 787–840.
- Olds, C. D., 1963 Continued Fractions. Random House and L.W.
Singer Company, New York.
- Pomstra, G., 2018 The Constant of Champernowne. Ph.D. thesis, University
of Groningen.
- Sethi, D., N. Nagaraj, and N. B. Harikrishnan, 2023 Neurochaos
feature transformation for machine learning. Integration 90: 157–
162.
- Skarda, C. A. andW. J. Freeman, 1990 Chaos and the new science
of the brain. Concepts in neuroscience 1: 275–285.
- Strogatz, S. H., 2018 Nonlinear dynamics and chaos with student solutions
manual: With applications to physics, biology, chemistry, and
engineering. CRC press, Taylor & Francis Group.
- Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics.
Current opinion in neurobiology 31: 67–71.