Research Article
BibTex RIS Cite

Universal Orbits: Unveiling the Connection between Chaotic Dynamics, Normal Numbers, and Neurochaos Learning

Year 2025, Volume: 7 Issue: 1, 61 - 69
https://doi.org/10.51537/chaos.1560943

Abstract

This study explores the realm of chaotic dynamics, Neurochaos Learning (a brain-inspired machine learning paradigm) and Normal numbers, focusing on the introduction of a novel chaotic trajectory termed the Universal Orbit. The study investigates the characteristics and generation of universal orbits within two prominent chaotic maps: the Decimal Shift Map and the Gauss Map. It explores the set of points capable of forming such orbits, revealing connections with normal numbers and continued fractions. Points within the interval (0, 1) can produce universal orbits under specific conditions, highlighting the intricate relationship between machine learning, chaotic dynamics and number theory. While not all points forming universal orbits are normal numbers, the trajectory of a normal number may represent a universal orbit (under certain conditions). When employing the universal orbit for feature extraction in Neurochaos Learning, the firing time feature can be interpreted by establishing an upper bound and examining its trend. Future research aims to identify sets of points producing universal orbits under various chaotic maps, intending to enhance the performance of algorithms like the Neurochaos Learning algorithm. This study contributes to advancing our understanding of chaotic systems and their applications in artificial intelligence.

References

  • Adler, R., M. Keane, and M. Smorodinsky, 1981 A construction of a normal number for the continued fraction transformation. Journal of Number Theory 13: 95–105.
  • Alligood, K. T., T. D. Sauer, J. A. Yorke, and D. Chillingworth, 1998 Chaos: an introduction to dynamical systems. SIAM Review 40: 732–732.
  • Badillo, S., B. Banfai, F. Birzele, I. I. Davydov, L. Hutchinson, et al., 2020 An introduction to machine learning. Clinical pharmacology & therapeutics 107: 871–885.
  • Bailey, D. H., J. M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu, et al., 2012 Normality and the digits of pi. Exp. Math.(2012, to appear), available at http://crd-legacy. lbl. gov/˜ dhbailey/dhbpapers/normality. pdf .
  • Bailey, D. H. and R. E. Crandall, 2001 On the random character of fundamental constant expansions. Experimental Mathematics 10: 175–190.
  • Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019 Chaosnet: A chaos based artificial neural network architecture for classification. Chaos: An Interdisciplinary Journal of Nonlinear Science 29.
  • Bates, B., M. Bunder, and K. Tognetti, 2005 Continued fractions and the gauss map. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21: 113–125.
  • Bau, H. H., Y. Shachmurove, et al., 2002 Chaos Theory and its Application. University of Pennsylvania, Center for Analytic Research in Economics and the Social Sciences, Philadelphia.
  • Becher, V. and S. A. Yuhjtman, 2019 On absolutely normal and continued fraction normal numbers. International Mathematics Research Notices 2019: 6136–6161.
  • Biswas, H. R., M. M. Hasan, and S. K. Bala, 2018 Chaos theory and its applications in our real life. Barishal University Journal Part 1: 123–140.
  • Borel, É., 1950 Sur les chiffres décimaux de √ 2 et divers problemes de probabilités en chaıne. CR Acad. Sci. Paris 230: 591–593.
  • Champernowne, D. G., 1933 The construction of decimals normal in the scale of ten. Journal of the London Mathematical Society 1: 254–260.
  • Copeland, A. H. and P. Erdös, 1946 Note on normal numbers. Bull. Amer. Math. Soc. 52: 857–860.
  • Corless, R. M., 1992 Continued fractions and chaos. The American mathematical monthly 99: 203–215.
  • Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers, volume 29. American Mathematical Soc.,Washington,DC.
  • Devaney, R. L., 2018 A first course in chaotic dynamical systems: theory and experiment. CRC Press, Taylor & Francis Group.
  • Émile Borel, M., 1909 Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo (1884-1940) 27: 247–271.
  • Fan, S., 1946 The copeland-erd˝os theorem on normal numbers. Available at https://math.dartmouth.edu/~stevefan/research.html.
  • Faure, P. and H. Korn, 2001 Is there chaos in the brain? i. concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 324: 773–793.
  • Harikrishnan, N. and N. Nagaraj, 2020 Neurochaos inspired hybrid machine learning architecture for classification. In 2020 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5, IEEE.
  • Harikrishnan, N., S. Pranay, and N. Nagaraj, 2022 Classification of sars-cov-2 viral genome sequences using neurochaos learning. Medical & Biological Engineering & Computing 60: 2245–2255.
  • Harikrishnan, N. B. and N. Nagaraj, 2019 A novel chaos theory inspired neuronal architecture. In 2019 Global Conference for Advancement in Technology (GCAT), pp. 1–6, IEEE.
  • Harikrishnan, N. B. and N. Nagaraj, 2021 When noise meets chaos: Stochastic resonance in neurochaos learning. Neural Networks 143: 425–435.
  • Khona, M. and I. R. Fiete, 2022 Attractor and integrator networks in the brain. Nature Reviews Neuroscience 23: 744–766.
  • Khoshnevisan, D., 2006 On the normality of normal numbers. Clay Mathematics Institute Annual Report.
  • Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental evidence and related models. Comptes rendus biologies 326: 787–840.
  • Olds, C. D., 1963 Continued Fractions. Random House and L.W. Singer Company, New York.
  • Pomstra, G., 2018 The Constant of Champernowne. Ph.D. thesis, University of Groningen.
  • Sethi, D., N. Nagaraj, and N. B. Harikrishnan, 2023 Neurochaos feature transformation for machine learning. Integration 90: 157– 162.
  • Skarda, C. A. andW. J. Freeman, 1990 Chaos and the new science of the brain. Concepts in neuroscience 1: 275–285.
  • Strogatz, S. H., 2018 Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering. CRC press, Taylor & Francis Group.
  • Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics. Current opinion in neurobiology 31: 67–71.
Year 2025, Volume: 7 Issue: 1, 61 - 69
https://doi.org/10.51537/chaos.1560943

Abstract

References

  • Adler, R., M. Keane, and M. Smorodinsky, 1981 A construction of a normal number for the continued fraction transformation. Journal of Number Theory 13: 95–105.
  • Alligood, K. T., T. D. Sauer, J. A. Yorke, and D. Chillingworth, 1998 Chaos: an introduction to dynamical systems. SIAM Review 40: 732–732.
  • Badillo, S., B. Banfai, F. Birzele, I. I. Davydov, L. Hutchinson, et al., 2020 An introduction to machine learning. Clinical pharmacology & therapeutics 107: 871–885.
  • Bailey, D. H., J. M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu, et al., 2012 Normality and the digits of pi. Exp. Math.(2012, to appear), available at http://crd-legacy. lbl. gov/˜ dhbailey/dhbpapers/normality. pdf .
  • Bailey, D. H. and R. E. Crandall, 2001 On the random character of fundamental constant expansions. Experimental Mathematics 10: 175–190.
  • Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019 Chaosnet: A chaos based artificial neural network architecture for classification. Chaos: An Interdisciplinary Journal of Nonlinear Science 29.
  • Bates, B., M. Bunder, and K. Tognetti, 2005 Continued fractions and the gauss map. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21: 113–125.
  • Bau, H. H., Y. Shachmurove, et al., 2002 Chaos Theory and its Application. University of Pennsylvania, Center for Analytic Research in Economics and the Social Sciences, Philadelphia.
  • Becher, V. and S. A. Yuhjtman, 2019 On absolutely normal and continued fraction normal numbers. International Mathematics Research Notices 2019: 6136–6161.
  • Biswas, H. R., M. M. Hasan, and S. K. Bala, 2018 Chaos theory and its applications in our real life. Barishal University Journal Part 1: 123–140.
  • Borel, É., 1950 Sur les chiffres décimaux de √ 2 et divers problemes de probabilités en chaıne. CR Acad. Sci. Paris 230: 591–593.
  • Champernowne, D. G., 1933 The construction of decimals normal in the scale of ten. Journal of the London Mathematical Society 1: 254–260.
  • Copeland, A. H. and P. Erdös, 1946 Note on normal numbers. Bull. Amer. Math. Soc. 52: 857–860.
  • Corless, R. M., 1992 Continued fractions and chaos. The American mathematical monthly 99: 203–215.
  • Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers, volume 29. American Mathematical Soc.,Washington,DC.
  • Devaney, R. L., 2018 A first course in chaotic dynamical systems: theory and experiment. CRC Press, Taylor & Francis Group.
  • Émile Borel, M., 1909 Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo (1884-1940) 27: 247–271.
  • Fan, S., 1946 The copeland-erd˝os theorem on normal numbers. Available at https://math.dartmouth.edu/~stevefan/research.html.
  • Faure, P. and H. Korn, 2001 Is there chaos in the brain? i. concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 324: 773–793.
  • Harikrishnan, N. and N. Nagaraj, 2020 Neurochaos inspired hybrid machine learning architecture for classification. In 2020 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5, IEEE.
  • Harikrishnan, N., S. Pranay, and N. Nagaraj, 2022 Classification of sars-cov-2 viral genome sequences using neurochaos learning. Medical & Biological Engineering & Computing 60: 2245–2255.
  • Harikrishnan, N. B. and N. Nagaraj, 2019 A novel chaos theory inspired neuronal architecture. In 2019 Global Conference for Advancement in Technology (GCAT), pp. 1–6, IEEE.
  • Harikrishnan, N. B. and N. Nagaraj, 2021 When noise meets chaos: Stochastic resonance in neurochaos learning. Neural Networks 143: 425–435.
  • Khona, M. and I. R. Fiete, 2022 Attractor and integrator networks in the brain. Nature Reviews Neuroscience 23: 744–766.
  • Khoshnevisan, D., 2006 On the normality of normal numbers. Clay Mathematics Institute Annual Report.
  • Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental evidence and related models. Comptes rendus biologies 326: 787–840.
  • Olds, C. D., 1963 Continued Fractions. Random House and L.W. Singer Company, New York.
  • Pomstra, G., 2018 The Constant of Champernowne. Ph.D. thesis, University of Groningen.
  • Sethi, D., N. Nagaraj, and N. B. Harikrishnan, 2023 Neurochaos feature transformation for machine learning. Integration 90: 157– 162.
  • Skarda, C. A. andW. J. Freeman, 1990 Chaos and the new science of the brain. Concepts in neuroscience 1: 275–285.
  • Strogatz, S. H., 2018 Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering. CRC press, Taylor & Francis Group.
  • Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics. Current opinion in neurobiology 31: 67–71.
There are 32 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications
Journal Section Research Articles
Authors

Akhila Henry 0000-0002-0496-0362

Nithin Nagaraj 0000-0003-0097-4131

Rajan Sundaravaradhan 0009-0009-0901-2060

Publication Date
Submission Date October 4, 2024
Acceptance Date January 1, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Henry, A., Nagaraj, N., & Sundaravaradhan, R. (n.d.). Universal Orbits: Unveiling the Connection between Chaotic Dynamics, Normal Numbers, and Neurochaos Learning. Chaos Theory and Applications, 7(1), 61-69. https://doi.org/10.51537/chaos.1560943

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg