Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 2, 107 - 116, 31.07.2025
https://doi.org/10.51537/chaos.1601947

Abstract

References

  • Alligood, K. T., T. D. Sauer, J. A. Yorke, and D. Chillingworth, 1998 Chaos: an introduction to dynamical systems. SIAM Review 40: 732–732.
  • Alzaidi, A. A., M. Ahmad, H. S. Ahmed, and E. A. Solami, 2018 Sine-cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map. Complexity 2018: 9389065.
  • Aram, Z., S. Jafari, J. Ma, J. C. Sprott, S. Zendehrouh, et al., 2017 Using chaotic artificial neural networks to model memory in the brain. Communications in Nonlinear Science and Numerical Simulation 44: 449–459.
  • AS, R. A., N. B. Harikrishnan, and N. Nagaraj, 2023 Analysis of logistic map based neurons in neurochaos learning architectures for data classification. Chaos, Solitons & Fractals 170: 113347.
  • Ayers, K. and A. Radunskaya, 2024 Noisy fixed points: Stability of the invariant distribution of the random logistic map. arXiv preprint arXiv:2403.13116 .
  • Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019 Chaosnet: A chaos based artificial neural network architecture for classification. Chaos: An Interdisciplinary Journal of Nonlinear Science 29.
  • Breiman, L., 2001 Statistics department university of california berkeley, ca 94720. 2001. Random Forests .
  • Chen, S., S. Feng,W. Fu, and Y. Zhang, 2021 Logistic map: Stability and entrance to chaos. In Journal of Physics: Conference Series, volume 2014, p. 012009, IOP Publishing.
  • Christen, P., D. J. Hand, and N. Kirielle, 2023 A review of the fmeasure: its history, properties, criticism, and alternatives. ACM Computing Surveys 56: 1–24.
  • Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers, volume 29. American Mathematical Soc.
  • Devaney, R. L., 2018 A first course in chaotic dynamical systems: theory and experiment. CRC Press.
  • Dua, D., C. Graff, et al., 2017 Uci machine learning repository, 2017. URL http://archive. ics. uci. edu/ml 7: 62.
  • Faure, P. and H. Korn, 2001 Is there chaos in the brain? i. concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 324: 773–793.
  • Fisher, R. A., 1936 The use of multiple measurements in taxonomic problems. Annals of eugenics 7: 179–188.
  • Forina, M., R. Leardi, C. Armanino, S. Lanteri, P. Conti, et al., 1988 Parvus an extendable package of programs for data exploration, classification and correlation .
  • Gillich, E. and V. Lohweg, 2010 Banknote authentication. 1. Jahreskolloquium Bild. Der Autom pp. 1–8.
  • Gorman, R. P. and T. J. Sejnowski, 1988 Analysis of hidden units in a layered network trained to classify sonar targets. Neural networks 1: 75–89.
  • Griffin, J., 2013 The sine map. Retrieved May 4: 2018. Haberman, S. J., 1973 The analysis of residuals in cross-classified tables. Biometrics pp. 205–220.
  • Harikrishnan, N. and N. Nagaraj, 2020 Neurochaos inspired hybrid machine learning architecture for classification. In 2020 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5, IEEE.
  • Horst, A. M., A. P. Hill, and K. B. Gorman, 2020 palmerpenguins: Palmer archipelago (antarctica) penguin data. r package version 0.1. 0.
  • Kowalik, Z. J., A. Wróbel, and A. Rydz, 1996 Why does the human brain need to be a nonlinear system? Behavioral and Brain Sciences 19: 302–303.
  • Kuijpers, B., 2021 Deciding the point-to-fixed-point problem for skew tent maps on an interval. Journal of Computer and System Sciences 115: 113–120.
  • Machicao, J., M. Alves, M. S. Baptista, and O. M. Bruno, 2019 Exploiting ergodicity of the logistic map using deep-zoom to improve security of chaos-based cryptosystems. International Journal of Modern Physics C 30: 1950033.
  • Muthuvel, K. et al., 2000 Composition of functions. International Journal of Mathematics and Mathematical Sciences 24: 213–216.
  • Naanaa, A., 2015 Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization. Applied Mathematics and Computation 269: 402–411.
  • Nagaraj, N., 2022 The unreasonable effectiveness of the chaotic tent map in engineering applications. Chaos Theory and Applications 4: 197–204.
  • Niel, O., 2023 A novel algorithm can generate data to train machine learning models in conditions of extreme scarcity of real world data. arXiv preprint arXiv:2305.00987.
  • Palacios-Luengas, L., R. Marcelín-Jiménez, E. Rodriguez-Colina, M. Pascoe-Chalke, O. Jiménez-Ramírez, et al., 2021 Function composition from sine function and skew tent map and its application to pseudorandom number generators. Applied Sciences 11: 5769.
  • Sarker, I. H., 2021 Machine learning: Algorithms, real-world applications and research directions. SN computer science 2: 160.
  • Sarker, I. H., M. H. Furhad, and R. Nowrozy, 2021 Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Computer Science 2: 173.
  • Sethi, D., N. Nagaraj, and N. B. Harikrishnan, 2023 Neurochaos feature transformation for machine learning. Integration 90: 157– 162.
  • Sigillito, V. G., S. P. Wing, L. V. Hutton, and K. B. Baker, 1989 Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10: 262–266.
  • Street, W. N., W. H. Wolberg, and O. L. Mangasarian, 1993 Nuclear feature extraction for breast tumor diagnosis. In Biomedical image processing and biomedical visualization, volume 1905, pp. 861–870, SPIE.
  • Suryadi, M., Y. Satria, V. Melvina, L. N. Prawadika, and I. M. Sholihat, 2020 A new chaotic map development through the composition of the ms map and the dyadic transformation map. In Journal of Physics: Conference Series, volume 1490, p. 012024, IOP Publishing.
  • Zhu, S., G. Wang, and C. Zhu, 2019 A secure and fast image encryption scheme based on double chaotic s-boxes. Entropy 21: 790.

Neurochaos Learning for Classification using Composition of Chaotic Maps

Year 2025, Volume: 7 Issue: 2, 107 - 116, 31.07.2025
https://doi.org/10.51537/chaos.1601947

Abstract

In the age of increasing data availability, there is a pressing need for fast and precise algorithms that can classify datasets. Traditional methods like Support Vector Machines, Random Forest, and Neural Networks are commonly used, but a novel approach known as Neurochaos Learning (NL) has demonstrated strong classification performance across various datasets by incorporating chaos theory. However, the original NL algorithm requires tuning three hyperparameters and involves extraction of multiple features, leading to significant training time. In this study, we propose a modified NL algorithm with only a single hyperparameter and a single feature, using two distinct compositions of 1D chaotic maps, the Skew Tent map with the Logistic map, and the Skew Tent map with $sin(\pi x)$, thereby drastically reducing training time while maintaining classification performance. This study also analyses the 1D chaotic properties of composition of these chaotic maps including Lyapunov Exponent and the stability of fixed points. Testing on ten datasets including Iris, Penguin, Haberman, and Bank Note Authentication, our method yields very competitive F1 scores. The composition of the Logistic Map and Skew Tent Map yields an F1 score of $0.569$ for the Haberman dataset and an impressive $0.968$ for the Penguin dataset using cosine similarity. Utilizing the composition of $sin(\pi x)$ and Skew Tent Map, the Ionosphere dataset achieves an F1 score of $0.876$. Our method's versatility is further demonstrated with the Random Forest Algorithm, achieving a perfect F1 score of $1.0$ on the Iris dataset with the Skew Tent and Logistic Map composition and the same score on the Penguin dataset using the $sin(\pi x)$ and Skew Tent Map composition. This streamlined approach meets the demand for faster and more efficient classification algorithms, offering reliable performance in data-rich environments.

References

  • Alligood, K. T., T. D. Sauer, J. A. Yorke, and D. Chillingworth, 1998 Chaos: an introduction to dynamical systems. SIAM Review 40: 732–732.
  • Alzaidi, A. A., M. Ahmad, H. S. Ahmed, and E. A. Solami, 2018 Sine-cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map. Complexity 2018: 9389065.
  • Aram, Z., S. Jafari, J. Ma, J. C. Sprott, S. Zendehrouh, et al., 2017 Using chaotic artificial neural networks to model memory in the brain. Communications in Nonlinear Science and Numerical Simulation 44: 449–459.
  • AS, R. A., N. B. Harikrishnan, and N. Nagaraj, 2023 Analysis of logistic map based neurons in neurochaos learning architectures for data classification. Chaos, Solitons & Fractals 170: 113347.
  • Ayers, K. and A. Radunskaya, 2024 Noisy fixed points: Stability of the invariant distribution of the random logistic map. arXiv preprint arXiv:2403.13116 .
  • Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019 Chaosnet: A chaos based artificial neural network architecture for classification. Chaos: An Interdisciplinary Journal of Nonlinear Science 29.
  • Breiman, L., 2001 Statistics department university of california berkeley, ca 94720. 2001. Random Forests .
  • Chen, S., S. Feng,W. Fu, and Y. Zhang, 2021 Logistic map: Stability and entrance to chaos. In Journal of Physics: Conference Series, volume 2014, p. 012009, IOP Publishing.
  • Christen, P., D. J. Hand, and N. Kirielle, 2023 A review of the fmeasure: its history, properties, criticism, and alternatives. ACM Computing Surveys 56: 1–24.
  • Dajani, K. and C. Kraaikamp, 2002 Ergodic theory of numbers, volume 29. American Mathematical Soc.
  • Devaney, R. L., 2018 A first course in chaotic dynamical systems: theory and experiment. CRC Press.
  • Dua, D., C. Graff, et al., 2017 Uci machine learning repository, 2017. URL http://archive. ics. uci. edu/ml 7: 62.
  • Faure, P. and H. Korn, 2001 Is there chaos in the brain? i. concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 324: 773–793.
  • Fisher, R. A., 1936 The use of multiple measurements in taxonomic problems. Annals of eugenics 7: 179–188.
  • Forina, M., R. Leardi, C. Armanino, S. Lanteri, P. Conti, et al., 1988 Parvus an extendable package of programs for data exploration, classification and correlation .
  • Gillich, E. and V. Lohweg, 2010 Banknote authentication. 1. Jahreskolloquium Bild. Der Autom pp. 1–8.
  • Gorman, R. P. and T. J. Sejnowski, 1988 Analysis of hidden units in a layered network trained to classify sonar targets. Neural networks 1: 75–89.
  • Griffin, J., 2013 The sine map. Retrieved May 4: 2018. Haberman, S. J., 1973 The analysis of residuals in cross-classified tables. Biometrics pp. 205–220.
  • Harikrishnan, N. and N. Nagaraj, 2020 Neurochaos inspired hybrid machine learning architecture for classification. In 2020 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5, IEEE.
  • Horst, A. M., A. P. Hill, and K. B. Gorman, 2020 palmerpenguins: Palmer archipelago (antarctica) penguin data. r package version 0.1. 0.
  • Kowalik, Z. J., A. Wróbel, and A. Rydz, 1996 Why does the human brain need to be a nonlinear system? Behavioral and Brain Sciences 19: 302–303.
  • Kuijpers, B., 2021 Deciding the point-to-fixed-point problem for skew tent maps on an interval. Journal of Computer and System Sciences 115: 113–120.
  • Machicao, J., M. Alves, M. S. Baptista, and O. M. Bruno, 2019 Exploiting ergodicity of the logistic map using deep-zoom to improve security of chaos-based cryptosystems. International Journal of Modern Physics C 30: 1950033.
  • Muthuvel, K. et al., 2000 Composition of functions. International Journal of Mathematics and Mathematical Sciences 24: 213–216.
  • Naanaa, A., 2015 Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization. Applied Mathematics and Computation 269: 402–411.
  • Nagaraj, N., 2022 The unreasonable effectiveness of the chaotic tent map in engineering applications. Chaos Theory and Applications 4: 197–204.
  • Niel, O., 2023 A novel algorithm can generate data to train machine learning models in conditions of extreme scarcity of real world data. arXiv preprint arXiv:2305.00987.
  • Palacios-Luengas, L., R. Marcelín-Jiménez, E. Rodriguez-Colina, M. Pascoe-Chalke, O. Jiménez-Ramírez, et al., 2021 Function composition from sine function and skew tent map and its application to pseudorandom number generators. Applied Sciences 11: 5769.
  • Sarker, I. H., 2021 Machine learning: Algorithms, real-world applications and research directions. SN computer science 2: 160.
  • Sarker, I. H., M. H. Furhad, and R. Nowrozy, 2021 Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Computer Science 2: 173.
  • Sethi, D., N. Nagaraj, and N. B. Harikrishnan, 2023 Neurochaos feature transformation for machine learning. Integration 90: 157– 162.
  • Sigillito, V. G., S. P. Wing, L. V. Hutton, and K. B. Baker, 1989 Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10: 262–266.
  • Street, W. N., W. H. Wolberg, and O. L. Mangasarian, 1993 Nuclear feature extraction for breast tumor diagnosis. In Biomedical image processing and biomedical visualization, volume 1905, pp. 861–870, SPIE.
  • Suryadi, M., Y. Satria, V. Melvina, L. N. Prawadika, and I. M. Sholihat, 2020 A new chaotic map development through the composition of the ms map and the dyadic transformation map. In Journal of Physics: Conference Series, volume 1490, p. 012024, IOP Publishing.
  • Zhu, S., G. Wang, and C. Zhu, 2019 A secure and fast image encryption scheme based on double chaotic s-boxes. Entropy 21: 790.
There are 35 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications
Journal Section Research Articles
Authors

Akhila Henry 0000-0002-0496-0362

Nithin Nagaraj 0000-0003-0097-4131

Publication Date July 31, 2025
Submission Date December 15, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Henry, A., & Nagaraj, N. (2025). Neurochaos Learning for Classification using Composition of Chaotic Maps. Chaos Theory and Applications, 7(2), 107-116. https://doi.org/10.51537/chaos.1601947

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg