Year 2025,
Volume: 7 Issue: 2, 99 - 106, 31.07.2025
Juan Gonzalo Barajas Ramirez
,
Hugo G. Gonzalez-hernandez
References
-
Almeida, D. I. R., J. Alvarez, and J. G. Barajas, 2006 Robust synchronization
of sprott circuits using sliding mode control. Chaos,
Solitons & Fractals 30: 11–18.
-
Alvarez, J., 1996 Synchronization in the lorenz system: stability
and robustness. Nonlinear Dynamics 10: 89–103.
-
Alvarez, J., D. Rosas, D. Hernandez, and E. Alvarez, 2010 Robust
synchronization of arrays of lagrangian systems. International
Journal of Control, Automation and Systems 8: 1039–1047.
-
Arreola-Delgado, A. and J. G. Barajas-Ramírez, 2021 On the controllability
of networks with nonidentical linear nodes. IMA Journal
of Mathematical Control and Information 38: 39–53.
-
Assali, E. A., 2021 Predefined-time synchronization of chaotic systems
with different dimensions and applications. Chaos, Solitons
& Fractals 147: 110988.
-
Boccaletti, S., J. Kurths, G. Osipov, D. Valladares, and C. Zhou,
2002 The synchronization of chaotic systems. Physics reports
366: 1–101.
-
Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang,
2006 Complex networks: Structure and dynamics. Physics reports
424: 175–308.
-
Delgado-Aranda, F., I. Campos-Cantón, E. Tristán-Hernández, and
P. Salas-Castro, 2020 Hidden attractors from the switching linear
systems. Revista mexicana de física 66: 683–691.
-
Duan, Z., G. Chen, and L. Huang, 2007 Complex network synchronizability:
Analysis and control. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics 76: 056103.
-
Duane, G. S., D. Yu, and L. Kocarev, 2007 Identical synchronization,
with translation invariance, implies parameter estimation.
Physics Letters A 371: 416–420.
-
Escalante-González, R. d. J. and E. Campos, 2021 Emergence of
hidden attractors through the rupture of heteroclinic-like orbits
of switched systems with self-excited attractors. Complexity
2021: 1–24.
-
Hong, Y., H. Qin, and G. Chen, 2001 Adaptive synchronization
of chaotic systems via state or output feedback control. International
Journal of Bifurcation and Chaos 11: 1149–1158.
-
Isidori, A., 1985 Nonlinear control systems: an introduction. Springer.
Jahanshahi, H., E. Zambrano-Serrano, S. Bekiros, Z.Wei, C. Volos,
et al., 2022 On the dynamical investigation and synchronization
of variable-order fractional neural networks: The hopfield-like
neural network model. The European Physical Journal Special
Topics 231: 1757–1769.
-
Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
atmospheric sciences 20: 130–141.
-
Lorenz, E. N., 2017 Deterministic nonperiodic flow 1. In Universality
in Chaos, 2nd edition, pp. 367–378, Routledge.
-
Olfati-Saber, R., J. A. Fax, and R. M. Murray, 2007 Consensus and
cooperation in networked multi-agent systems. Proceedings of
the IEEE 95: 215–233.
-
Pan, S. and F. Yin, 1997 Optimal control of chaos with synchronization.
International Journal of Bifurcation and Chaos 7: 2855–
2860.
-
Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic
systems. Physical review letters 64: 821.
-
Pikovsky, A., M. Rosenblum, J. Kurths, and A. Synchronization,
2001 A universal concept in nonlinear sciences. Self 2: 3.
-
Ruiz-Silva, A., B. B. Cassal-Quiroga, G. Huerta-Cuellar, and H. E.
Gilardi-Velázquez, 2022 On the behavior of bidirectionally coupled
multistable systems. The European Physical Journal Special
Topics 231: 369–379.
-
Ruiz-Silva, A., H. E. Gilardi-Velázquez, and E. Campos, 2021 Emergence
of synchronous behavior in a network with chaotic multistable
systems. Chaos, Solitons & Fractals 151: 111263.
-
Rulkov, N. F., M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel,
1995 Generalized synchronization of chaos in directionally coupled
chaotic systems. Physical Review E 51: 980.
-
Sarasola, C., F. J. Torrealdea, A. D’ANJOU, A. Moujahid, and
M. Graña, 2003 Feedback synchronization of chaotic systems.
International Journal of Bifurcation and Chaos 13: 177–191.
-
Serrano, F. E. and D. Ghosh, 2022 Robust stabilization and synchronization
in a network of chaotic systems with time-varying
delays. Chaos, Solitons & Fractals 159: 112134.
-
Sprott, J. C., 2000 Simple chaotic systems and circuits. American
Journal of Physics 68: 758–763.
-
Su, H. and X.Wang, 2013 Pinning control of complex networked systems:
Synchronization, consensus and flocking of networked systems
via pinning. Springer Science & Business Media.
-
Uriostegui-Legorreta, U., J. Estevez-Delgado, and H. Pérez-
Aguilar, 2024 Synchronization in network motifs of three piecewise
rössler systems coupled in ring configuration. International
Journal of Modern Physics C 35: 2450084.
-
Vincent, U. and A. Kenfack, 2008 Synchronization and bifurcation
structures in coupled periodically forced non-identical duffing
oscillators. Physica Scripta 77: 045005.
-
Zhu, D. and D. Zhou, 2008 Synchronization control of parallel dual
inverted pendulums. In 2008 IEEE International Conference on
Automation and Logistics, pp. 1486–1490, IEEE.
On the Synchronization of Bidirectionally Coupled Nonidentical Systems via Output Feedback
Year 2025,
Volume: 7 Issue: 2, 99 - 106, 31.07.2025
Juan Gonzalo Barajas Ramirez
,
Hugo G. Gonzalez-hernandez
Abstract
We investigate the synchronization of bidirectionally coupled nonidentical chaotic systems, addressing a critical challenge in nonlinear dynamics. Unlike traditional master-slave or unidirectional synchronization approaches, we propose a novel synchronization scheme based on output feedback linearization that ensures identical synchronization even in the presence of parameter mismatches and structural differences between systems. Our approach incorporates a nonlinear switching feedback law, which enhances stability and robustness in bidirectionally coupled configurations. We analyze the synchronization conditions using Lyapunov stability theory and illustrate our results through numerical simulations on well-known benchmark chaotic systems, including the Lorenz and Sprott systems. Our findings demonstrate that the proposed method can achieve stable synchronization in both identical and nonidentical configurations, even when the systems exhibit piecewise nonlinearities. These results extend the applicability of synchronization techniques to a broader class of chaotic systems and lay the groundwork for future research in networked dynamical systems.
References
-
Almeida, D. I. R., J. Alvarez, and J. G. Barajas, 2006 Robust synchronization
of sprott circuits using sliding mode control. Chaos,
Solitons & Fractals 30: 11–18.
-
Alvarez, J., 1996 Synchronization in the lorenz system: stability
and robustness. Nonlinear Dynamics 10: 89–103.
-
Alvarez, J., D. Rosas, D. Hernandez, and E. Alvarez, 2010 Robust
synchronization of arrays of lagrangian systems. International
Journal of Control, Automation and Systems 8: 1039–1047.
-
Arreola-Delgado, A. and J. G. Barajas-Ramírez, 2021 On the controllability
of networks with nonidentical linear nodes. IMA Journal
of Mathematical Control and Information 38: 39–53.
-
Assali, E. A., 2021 Predefined-time synchronization of chaotic systems
with different dimensions and applications. Chaos, Solitons
& Fractals 147: 110988.
-
Boccaletti, S., J. Kurths, G. Osipov, D. Valladares, and C. Zhou,
2002 The synchronization of chaotic systems. Physics reports
366: 1–101.
-
Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang,
2006 Complex networks: Structure and dynamics. Physics reports
424: 175–308.
-
Delgado-Aranda, F., I. Campos-Cantón, E. Tristán-Hernández, and
P. Salas-Castro, 2020 Hidden attractors from the switching linear
systems. Revista mexicana de física 66: 683–691.
-
Duan, Z., G. Chen, and L. Huang, 2007 Complex network synchronizability:
Analysis and control. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics 76: 056103.
-
Duane, G. S., D. Yu, and L. Kocarev, 2007 Identical synchronization,
with translation invariance, implies parameter estimation.
Physics Letters A 371: 416–420.
-
Escalante-González, R. d. J. and E. Campos, 2021 Emergence of
hidden attractors through the rupture of heteroclinic-like orbits
of switched systems with self-excited attractors. Complexity
2021: 1–24.
-
Hong, Y., H. Qin, and G. Chen, 2001 Adaptive synchronization
of chaotic systems via state or output feedback control. International
Journal of Bifurcation and Chaos 11: 1149–1158.
-
Isidori, A., 1985 Nonlinear control systems: an introduction. Springer.
Jahanshahi, H., E. Zambrano-Serrano, S. Bekiros, Z.Wei, C. Volos,
et al., 2022 On the dynamical investigation and synchronization
of variable-order fractional neural networks: The hopfield-like
neural network model. The European Physical Journal Special
Topics 231: 1757–1769.
-
Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
atmospheric sciences 20: 130–141.
-
Lorenz, E. N., 2017 Deterministic nonperiodic flow 1. In Universality
in Chaos, 2nd edition, pp. 367–378, Routledge.
-
Olfati-Saber, R., J. A. Fax, and R. M. Murray, 2007 Consensus and
cooperation in networked multi-agent systems. Proceedings of
the IEEE 95: 215–233.
-
Pan, S. and F. Yin, 1997 Optimal control of chaos with synchronization.
International Journal of Bifurcation and Chaos 7: 2855–
2860.
-
Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic
systems. Physical review letters 64: 821.
-
Pikovsky, A., M. Rosenblum, J. Kurths, and A. Synchronization,
2001 A universal concept in nonlinear sciences. Self 2: 3.
-
Ruiz-Silva, A., B. B. Cassal-Quiroga, G. Huerta-Cuellar, and H. E.
Gilardi-Velázquez, 2022 On the behavior of bidirectionally coupled
multistable systems. The European Physical Journal Special
Topics 231: 369–379.
-
Ruiz-Silva, A., H. E. Gilardi-Velázquez, and E. Campos, 2021 Emergence
of synchronous behavior in a network with chaotic multistable
systems. Chaos, Solitons & Fractals 151: 111263.
-
Rulkov, N. F., M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel,
1995 Generalized synchronization of chaos in directionally coupled
chaotic systems. Physical Review E 51: 980.
-
Sarasola, C., F. J. Torrealdea, A. D’ANJOU, A. Moujahid, and
M. Graña, 2003 Feedback synchronization of chaotic systems.
International Journal of Bifurcation and Chaos 13: 177–191.
-
Serrano, F. E. and D. Ghosh, 2022 Robust stabilization and synchronization
in a network of chaotic systems with time-varying
delays. Chaos, Solitons & Fractals 159: 112134.
-
Sprott, J. C., 2000 Simple chaotic systems and circuits. American
Journal of Physics 68: 758–763.
-
Su, H. and X.Wang, 2013 Pinning control of complex networked systems:
Synchronization, consensus and flocking of networked systems
via pinning. Springer Science & Business Media.
-
Uriostegui-Legorreta, U., J. Estevez-Delgado, and H. Pérez-
Aguilar, 2024 Synchronization in network motifs of three piecewise
rössler systems coupled in ring configuration. International
Journal of Modern Physics C 35: 2450084.
-
Vincent, U. and A. Kenfack, 2008 Synchronization and bifurcation
structures in coupled periodically forced non-identical duffing
oscillators. Physica Scripta 77: 045005.
-
Zhu, D. and D. Zhou, 2008 Synchronization control of parallel dual
inverted pendulums. In 2008 IEEE International Conference on
Automation and Logistics, pp. 1486–1490, IEEE.