Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 2, 99 - 106, 31.07.2025
https://doi.org/10.51537/chaos.1621182

Abstract

References

  • Almeida, D. I. R., J. Alvarez, and J. G. Barajas, 2006 Robust synchronization of sprott circuits using sliding mode control. Chaos, Solitons & Fractals 30: 11–18.
  • Alvarez, J., 1996 Synchronization in the lorenz system: stability and robustness. Nonlinear Dynamics 10: 89–103.
  • Alvarez, J., D. Rosas, D. Hernandez, and E. Alvarez, 2010 Robust synchronization of arrays of lagrangian systems. International Journal of Control, Automation and Systems 8: 1039–1047.
  • Arreola-Delgado, A. and J. G. Barajas-Ramírez, 2021 On the controllability of networks with nonidentical linear nodes. IMA Journal of Mathematical Control and Information 38: 39–53.
  • Assali, E. A., 2021 Predefined-time synchronization of chaotic systems with different dimensions and applications. Chaos, Solitons & Fractals 147: 110988.
  • Boccaletti, S., J. Kurths, G. Osipov, D. Valladares, and C. Zhou, 2002 The synchronization of chaotic systems. Physics reports 366: 1–101.
  • Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, 2006 Complex networks: Structure and dynamics. Physics reports 424: 175–308.
  • Delgado-Aranda, F., I. Campos-Cantón, E. Tristán-Hernández, and P. Salas-Castro, 2020 Hidden attractors from the switching linear systems. Revista mexicana de física 66: 683–691.
  • Duan, Z., G. Chen, and L. Huang, 2007 Complex network synchronizability: Analysis and control. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 76: 056103.
  • Duane, G. S., D. Yu, and L. Kocarev, 2007 Identical synchronization, with translation invariance, implies parameter estimation. Physics Letters A 371: 416–420.
  • Escalante-González, R. d. J. and E. Campos, 2021 Emergence of hidden attractors through the rupture of heteroclinic-like orbits of switched systems with self-excited attractors. Complexity 2021: 1–24.
  • Hong, Y., H. Qin, and G. Chen, 2001 Adaptive synchronization of chaotic systems via state or output feedback control. International Journal of Bifurcation and Chaos 11: 1149–1158.
  • Isidori, A., 1985 Nonlinear control systems: an introduction. Springer. Jahanshahi, H., E. Zambrano-Serrano, S. Bekiros, Z.Wei, C. Volos, et al., 2022 On the dynamical investigation and synchronization of variable-order fractional neural networks: The hopfield-like neural network model. The European Physical Journal Special Topics 231: 1757–1769.
  • Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of atmospheric sciences 20: 130–141.
  • Lorenz, E. N., 2017 Deterministic nonperiodic flow 1. In Universality in Chaos, 2nd edition, pp. 367–378, Routledge.
  • Olfati-Saber, R., J. A. Fax, and R. M. Murray, 2007 Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95: 215–233.
  • Pan, S. and F. Yin, 1997 Optimal control of chaos with synchronization. International Journal of Bifurcation and Chaos 7: 2855– 2860.
  • Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic systems. Physical review letters 64: 821.
  • Pikovsky, A., M. Rosenblum, J. Kurths, and A. Synchronization, 2001 A universal concept in nonlinear sciences. Self 2: 3.
  • Ruiz-Silva, A., B. B. Cassal-Quiroga, G. Huerta-Cuellar, and H. E. Gilardi-Velázquez, 2022 On the behavior of bidirectionally coupled multistable systems. The European Physical Journal Special Topics 231: 369–379.
  • Ruiz-Silva, A., H. E. Gilardi-Velázquez, and E. Campos, 2021 Emergence of synchronous behavior in a network with chaotic multistable systems. Chaos, Solitons & Fractals 151: 111263.
  • Rulkov, N. F., M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel, 1995 Generalized synchronization of chaos in directionally coupled chaotic systems. Physical Review E 51: 980.
  • Sarasola, C., F. J. Torrealdea, A. D’ANJOU, A. Moujahid, and M. Graña, 2003 Feedback synchronization of chaotic systems. International Journal of Bifurcation and Chaos 13: 177–191.
  • Serrano, F. E. and D. Ghosh, 2022 Robust stabilization and synchronization in a network of chaotic systems with time-varying delays. Chaos, Solitons & Fractals 159: 112134.
  • Sprott, J. C., 2000 Simple chaotic systems and circuits. American Journal of Physics 68: 758–763.
  • Su, H. and X.Wang, 2013 Pinning control of complex networked systems: Synchronization, consensus and flocking of networked systems via pinning. Springer Science & Business Media.
  • Uriostegui-Legorreta, U., J. Estevez-Delgado, and H. Pérez- Aguilar, 2024 Synchronization in network motifs of three piecewise rössler systems coupled in ring configuration. International Journal of Modern Physics C 35: 2450084.
  • Vincent, U. and A. Kenfack, 2008 Synchronization and bifurcation structures in coupled periodically forced non-identical duffing oscillators. Physica Scripta 77: 045005.
  • Zhu, D. and D. Zhou, 2008 Synchronization control of parallel dual inverted pendulums. In 2008 IEEE International Conference on Automation and Logistics, pp. 1486–1490, IEEE.

On the Synchronization of Bidirectionally Coupled Nonidentical Systems via Output Feedback

Year 2025, Volume: 7 Issue: 2, 99 - 106, 31.07.2025
https://doi.org/10.51537/chaos.1621182

Abstract

We investigate the synchronization of bidirectionally coupled nonidentical chaotic systems, addressing a critical challenge in nonlinear dynamics. Unlike traditional master-slave or unidirectional synchronization approaches, we propose a novel synchronization scheme based on output feedback linearization that ensures identical synchronization even in the presence of parameter mismatches and structural differences between systems. Our approach incorporates a nonlinear switching feedback law, which enhances stability and robustness in bidirectionally coupled configurations. We analyze the synchronization conditions using Lyapunov stability theory and illustrate our results through numerical simulations on well-known benchmark chaotic systems, including the Lorenz and Sprott systems. Our findings demonstrate that the proposed method can achieve stable synchronization in both identical and nonidentical configurations, even when the systems exhibit piecewise nonlinearities. These results extend the applicability of synchronization techniques to a broader class of chaotic systems and lay the groundwork for future research in networked dynamical systems.

References

  • Almeida, D. I. R., J. Alvarez, and J. G. Barajas, 2006 Robust synchronization of sprott circuits using sliding mode control. Chaos, Solitons & Fractals 30: 11–18.
  • Alvarez, J., 1996 Synchronization in the lorenz system: stability and robustness. Nonlinear Dynamics 10: 89–103.
  • Alvarez, J., D. Rosas, D. Hernandez, and E. Alvarez, 2010 Robust synchronization of arrays of lagrangian systems. International Journal of Control, Automation and Systems 8: 1039–1047.
  • Arreola-Delgado, A. and J. G. Barajas-Ramírez, 2021 On the controllability of networks with nonidentical linear nodes. IMA Journal of Mathematical Control and Information 38: 39–53.
  • Assali, E. A., 2021 Predefined-time synchronization of chaotic systems with different dimensions and applications. Chaos, Solitons & Fractals 147: 110988.
  • Boccaletti, S., J. Kurths, G. Osipov, D. Valladares, and C. Zhou, 2002 The synchronization of chaotic systems. Physics reports 366: 1–101.
  • Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, 2006 Complex networks: Structure and dynamics. Physics reports 424: 175–308.
  • Delgado-Aranda, F., I. Campos-Cantón, E. Tristán-Hernández, and P. Salas-Castro, 2020 Hidden attractors from the switching linear systems. Revista mexicana de física 66: 683–691.
  • Duan, Z., G. Chen, and L. Huang, 2007 Complex network synchronizability: Analysis and control. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 76: 056103.
  • Duane, G. S., D. Yu, and L. Kocarev, 2007 Identical synchronization, with translation invariance, implies parameter estimation. Physics Letters A 371: 416–420.
  • Escalante-González, R. d. J. and E. Campos, 2021 Emergence of hidden attractors through the rupture of heteroclinic-like orbits of switched systems with self-excited attractors. Complexity 2021: 1–24.
  • Hong, Y., H. Qin, and G. Chen, 2001 Adaptive synchronization of chaotic systems via state or output feedback control. International Journal of Bifurcation and Chaos 11: 1149–1158.
  • Isidori, A., 1985 Nonlinear control systems: an introduction. Springer. Jahanshahi, H., E. Zambrano-Serrano, S. Bekiros, Z.Wei, C. Volos, et al., 2022 On the dynamical investigation and synchronization of variable-order fractional neural networks: The hopfield-like neural network model. The European Physical Journal Special Topics 231: 1757–1769.
  • Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of atmospheric sciences 20: 130–141.
  • Lorenz, E. N., 2017 Deterministic nonperiodic flow 1. In Universality in Chaos, 2nd edition, pp. 367–378, Routledge.
  • Olfati-Saber, R., J. A. Fax, and R. M. Murray, 2007 Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95: 215–233.
  • Pan, S. and F. Yin, 1997 Optimal control of chaos with synchronization. International Journal of Bifurcation and Chaos 7: 2855– 2860.
  • Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic systems. Physical review letters 64: 821.
  • Pikovsky, A., M. Rosenblum, J. Kurths, and A. Synchronization, 2001 A universal concept in nonlinear sciences. Self 2: 3.
  • Ruiz-Silva, A., B. B. Cassal-Quiroga, G. Huerta-Cuellar, and H. E. Gilardi-Velázquez, 2022 On the behavior of bidirectionally coupled multistable systems. The European Physical Journal Special Topics 231: 369–379.
  • Ruiz-Silva, A., H. E. Gilardi-Velázquez, and E. Campos, 2021 Emergence of synchronous behavior in a network with chaotic multistable systems. Chaos, Solitons & Fractals 151: 111263.
  • Rulkov, N. F., M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel, 1995 Generalized synchronization of chaos in directionally coupled chaotic systems. Physical Review E 51: 980.
  • Sarasola, C., F. J. Torrealdea, A. D’ANJOU, A. Moujahid, and M. Graña, 2003 Feedback synchronization of chaotic systems. International Journal of Bifurcation and Chaos 13: 177–191.
  • Serrano, F. E. and D. Ghosh, 2022 Robust stabilization and synchronization in a network of chaotic systems with time-varying delays. Chaos, Solitons & Fractals 159: 112134.
  • Sprott, J. C., 2000 Simple chaotic systems and circuits. American Journal of Physics 68: 758–763.
  • Su, H. and X.Wang, 2013 Pinning control of complex networked systems: Synchronization, consensus and flocking of networked systems via pinning. Springer Science & Business Media.
  • Uriostegui-Legorreta, U., J. Estevez-Delgado, and H. Pérez- Aguilar, 2024 Synchronization in network motifs of three piecewise rössler systems coupled in ring configuration. International Journal of Modern Physics C 35: 2450084.
  • Vincent, U. and A. Kenfack, 2008 Synchronization and bifurcation structures in coupled periodically forced non-identical duffing oscillators. Physica Scripta 77: 045005.
  • Zhu, D. and D. Zhou, 2008 Synchronization control of parallel dual inverted pendulums. In 2008 IEEE International Conference on Automation and Logistics, pp. 1486–1490, IEEE.
There are 29 citations in total.

Details

Primary Language English
Subjects Dynamical Systems in Applications
Journal Section Research Articles
Authors

Juan Gonzalo Barajas Ramirez 0000-0002-1213-276X

Hugo G. Gonzalez-hernandez 0000-0001-6495-9980

Publication Date July 31, 2025
Submission Date January 16, 2025
Acceptance Date April 1, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Barajas Ramirez, J. G., & Gonzalez-hernandez, H. G. (2025). On the Synchronization of Bidirectionally Coupled Nonidentical Systems via Output Feedback. Chaos Theory and Applications, 7(2), 99-106. https://doi.org/10.51537/chaos.1621182

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg