Research Article
BibTex RIS Cite

Neighborhoods of Certain Classes of Analytic Functions Defined By Miller-Ross Function

Year 2021, , 165 - 172, 31.12.2021
https://doi.org/10.48138/cjo.1028755

Abstract

Bu makalede, normalize edilmiş Miller-Ross yardımıyla tanımlanan negatif katsayılı açık U birim diskinde analitik fonksiyonların yeni bir alt sınıfını tanıtacağız. Bu makalenin amacı, tanıtılan bu alt sınıfa ait Miller-Ross fonksiyonu için katsayı eşitsizliklerini, indirgeme bağıntılarını ve komşuluk özelliklerini belirlemektir.

References

  • Aktaş, İ., & Orhan, H. (2015). Distortion bounds for a new subclass of analytic functions and their partial sums. Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics, Series III, 8(2), 1-12.
  • Altıntaş, O., & Owa, S. (1996). Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. and Math. Sci., 19, 797-800.
  • Altıntaş, O., Özkan, E., & Srivastava, H. M. (2000). Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Let., 13, 63-67.
  • Çağlar, M., Deniz, E., & Kazımoğlu, S. (2020). Neighborhoods of certain classes of analytic functions defined by normalized function Turkish Journal of Science, 5 (3), 226-232.
  • Darwish, H. E., Lashin, A. Y., & Hassan, B. F. (2015). Neighborhood properties of generalized Bessel function. Global Journal of Science Frontier Research (F), 15(9), 21-26.
  • Deniz, E., & Orhan, H. (2010). Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. Czechoslovak Math. J., 60(135), 699-713.
  • Goodman, A. W. (1957). Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc., 8, 598-601.
  • Keerthi, B. S., Gangadharan, A., & Srivastava, H. M. (2008). Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Model., 47, 271-277.
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Wiley.
  • Murugusundaramoorthy, G., & Srivastava, H. M. (2004). Neighborhoods of certain classes of analytic functions of complex order. J. Inequal. Pure Appl. Math., 5(2), Art. 24. 8 pp.
  • Orhan, H. (2007). On neighborhoods of analytic functions de_ned by using hadamard product. Novi Sad J. Math., 37(1), 17-25.
  • Ruscheweyh, S. (1981). Neighborhoods of univalent functions. Proc. Amer. Math. Soc., 81(4), 521-527.
  • Silverman, H. (1995). Neighborhoods of a classes of analytic function. Far East J. Math. Sci., 3(2), 175-183.
  • Srivastava, H. M., & Bulut, S. (2012) Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure. Appl. Math. Comput., 218, 6511-6518.
Year 2021, , 165 - 172, 31.12.2021
https://doi.org/10.48138/cjo.1028755

Abstract

References

  • Aktaş, İ., & Orhan, H. (2015). Distortion bounds for a new subclass of analytic functions and their partial sums. Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics, Series III, 8(2), 1-12.
  • Altıntaş, O., & Owa, S. (1996). Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. and Math. Sci., 19, 797-800.
  • Altıntaş, O., Özkan, E., & Srivastava, H. M. (2000). Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Let., 13, 63-67.
  • Çağlar, M., Deniz, E., & Kazımoğlu, S. (2020). Neighborhoods of certain classes of analytic functions defined by normalized function Turkish Journal of Science, 5 (3), 226-232.
  • Darwish, H. E., Lashin, A. Y., & Hassan, B. F. (2015). Neighborhood properties of generalized Bessel function. Global Journal of Science Frontier Research (F), 15(9), 21-26.
  • Deniz, E., & Orhan, H. (2010). Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. Czechoslovak Math. J., 60(135), 699-713.
  • Goodman, A. W. (1957). Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc., 8, 598-601.
  • Keerthi, B. S., Gangadharan, A., & Srivastava, H. M. (2008). Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Model., 47, 271-277.
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Wiley.
  • Murugusundaramoorthy, G., & Srivastava, H. M. (2004). Neighborhoods of certain classes of analytic functions of complex order. J. Inequal. Pure Appl. Math., 5(2), Art. 24. 8 pp.
  • Orhan, H. (2007). On neighborhoods of analytic functions de_ned by using hadamard product. Novi Sad J. Math., 37(1), 17-25.
  • Ruscheweyh, S. (1981). Neighborhoods of univalent functions. Proc. Amer. Math. Soc., 81(4), 521-527.
  • Silverman, H. (1995). Neighborhoods of a classes of analytic function. Far East J. Math. Sci., 3(2), 175-183.
  • Srivastava, H. M., & Bulut, S. (2012) Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure. Appl. Math. Comput., 218, 6511-6518.
There are 14 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Caucasian Journal of Science
Authors

Sercan Kazımoğlu 0000-0002-1023-4500

Publication Date December 31, 2021
Submission Date November 26, 2021
Acceptance Date December 28, 2021
Published in Issue Year 2021

Cite

APA Kazımoğlu, S. (2021). Neighborhoods of Certain Classes of Analytic Functions Defined By Miller-Ross Function. Caucasian Journal of Science, 8(2), 165-172. https://doi.org/10.48138/cjo.1028755

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png