Research Article
BibTex RIS Cite

Neighborhoods of Certain Classes of Analytic Functions Defined By Miller-Ross Function

Year 2021, Volume: 8 Issue: 2, 165 - 172, 31.12.2021
https://doi.org/10.48138/cjo.1028755

Abstract

Bu makalede, normalize edilmiş Miller-Ross yardımıyla tanımlanan negatif katsayılı açık U birim diskinde analitik fonksiyonların yeni bir alt sınıfını tanıtacağız. Bu makalenin amacı, tanıtılan bu alt sınıfa ait Miller-Ross fonksiyonu için katsayı eşitsizliklerini, indirgeme bağıntılarını ve komşuluk özelliklerini belirlemektir.

References

  • Aktaş, İ., & Orhan, H. (2015). Distortion bounds for a new subclass of analytic functions and their partial sums. Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics, Series III, 8(2), 1-12.
  • Altıntaş, O., & Owa, S. (1996). Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. and Math. Sci., 19, 797-800.
  • Altıntaş, O., Özkan, E., & Srivastava, H. M. (2000). Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Let., 13, 63-67.
  • Çağlar, M., Deniz, E., & Kazımoğlu, S. (2020). Neighborhoods of certain classes of analytic functions defined by normalized function Turkish Journal of Science, 5 (3), 226-232.
  • Darwish, H. E., Lashin, A. Y., & Hassan, B. F. (2015). Neighborhood properties of generalized Bessel function. Global Journal of Science Frontier Research (F), 15(9), 21-26.
  • Deniz, E., & Orhan, H. (2010). Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. Czechoslovak Math. J., 60(135), 699-713.
  • Goodman, A. W. (1957). Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc., 8, 598-601.
  • Keerthi, B. S., Gangadharan, A., & Srivastava, H. M. (2008). Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Model., 47, 271-277.
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Wiley.
  • Murugusundaramoorthy, G., & Srivastava, H. M. (2004). Neighborhoods of certain classes of analytic functions of complex order. J. Inequal. Pure Appl. Math., 5(2), Art. 24. 8 pp.
  • Orhan, H. (2007). On neighborhoods of analytic functions de_ned by using hadamard product. Novi Sad J. Math., 37(1), 17-25.
  • Ruscheweyh, S. (1981). Neighborhoods of univalent functions. Proc. Amer. Math. Soc., 81(4), 521-527.
  • Silverman, H. (1995). Neighborhoods of a classes of analytic function. Far East J. Math. Sci., 3(2), 175-183.
  • Srivastava, H. M., & Bulut, S. (2012) Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure. Appl. Math. Comput., 218, 6511-6518.
Year 2021, Volume: 8 Issue: 2, 165 - 172, 31.12.2021
https://doi.org/10.48138/cjo.1028755

Abstract

References

  • Aktaş, İ., & Orhan, H. (2015). Distortion bounds for a new subclass of analytic functions and their partial sums. Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics, Series III, 8(2), 1-12.
  • Altıntaş, O., & Owa, S. (1996). Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. and Math. Sci., 19, 797-800.
  • Altıntaş, O., Özkan, E., & Srivastava, H. M. (2000). Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Let., 13, 63-67.
  • Çağlar, M., Deniz, E., & Kazımoğlu, S. (2020). Neighborhoods of certain classes of analytic functions defined by normalized function Turkish Journal of Science, 5 (3), 226-232.
  • Darwish, H. E., Lashin, A. Y., & Hassan, B. F. (2015). Neighborhood properties of generalized Bessel function. Global Journal of Science Frontier Research (F), 15(9), 21-26.
  • Deniz, E., & Orhan, H. (2010). Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. Czechoslovak Math. J., 60(135), 699-713.
  • Goodman, A. W. (1957). Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc., 8, 598-601.
  • Keerthi, B. S., Gangadharan, A., & Srivastava, H. M. (2008). Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. Math. Comput. Model., 47, 271-277.
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Wiley.
  • Murugusundaramoorthy, G., & Srivastava, H. M. (2004). Neighborhoods of certain classes of analytic functions of complex order. J. Inequal. Pure Appl. Math., 5(2), Art. 24. 8 pp.
  • Orhan, H. (2007). On neighborhoods of analytic functions de_ned by using hadamard product. Novi Sad J. Math., 37(1), 17-25.
  • Ruscheweyh, S. (1981). Neighborhoods of univalent functions. Proc. Amer. Math. Soc., 81(4), 521-527.
  • Silverman, H. (1995). Neighborhoods of a classes of analytic function. Far East J. Math. Sci., 3(2), 175-183.
  • Srivastava, H. M., & Bulut, S. (2012) Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure. Appl. Math. Comput., 218, 6511-6518.
There are 14 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Caucasian Journal of Science
Authors

Sercan Kazımoğlu 0000-0002-1023-4500

Publication Date December 31, 2021
Submission Date November 26, 2021
Acceptance Date December 28, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Kazımoğlu, S. (2021). Neighborhoods of Certain Classes of Analytic Functions Defined By Miller-Ross Function. Caucasian Journal of Science, 8(2), 165-172. https://doi.org/10.48138/cjo.1028755

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png