Research Article
BibTex RIS Cite

Electronic and optical properties of a screened donor impurity in a two-dimensional quantum dot under THz laser field

Year 2024, Volume: 3 Issue: 1, 1 - 11, 31.12.2024

Abstract

Merkezde perdelenmiş Coulomb safsızlığına sahip iki boyutlu bir parabolik kuantum noktasının yoğun THz lazer alanına bağlı optik cevabının araştırılması, yüksek frekanslı Floquet teorisi çerçevesinde gerçekleştirilmiştir. Sistemin enerji spektrumu ve dalga fonksiyonları sonlu elemanlar yöntemi kullanılarak elde edilirken, optik soğurma katsayıları ve kırılma indisi değişiklikleri kompakt yoğunluk matrisi yaklaşımına göre hesaplanmaktadır. Sonuçlarımız, yoğun lazer alanının sistem üzerindeki etkisinin elektronik ve optik özelliklerde önemli değişikliklere yol açtığını vurgulamaktadır. Ayrıca, optik katsayıların pik genliği ve konumunun, perdeleme parametresi ve hapsetme şiddetinin değiştirilerek ayarlanabileceğini bulduk. Bu özelliklerin kontrol edilebilirliği optoelektronik cihazların optimizasyonunda faydalı olabilir.

Ethical Statement

All authors declare no conflict of interest.

References

  • Aktas, S., Kes, H., Boz, F.K. (2016). Control of a resonant tunneling structure by intense laser fields. Superlattices and Microstructures, 98, 220-227.
  • Al-Ahmadi, A. Fingerprints in the Optical and Transport Properties of Quantum Dots (1st ed.) Croatia: InTech. (2012).
  • Al-Hayek, I., Sandouqa, A.S. (2015). Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlattices and Microstructures, 85, 216-225.
  • Barseghyan, M.G. (2015). Physica E, 69, Electronic states of coupled quantum dot-ring structure under lateral electric field with and without a hydrogenic donor impurity. 219-223.
  • Bejan, D., Niculescu, E.C. (2016). Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field. The European Physical Journal B, 89, 138.
  • Bera, A., Ganguly, J., Saha, S., Ghosh, M. (2015). Interplay between noise and position-dependent dielectric screening function in modulating nonlinear optical properties of impurity doped quantum dots. Optik, 127, 6771-6778.
  • Brandi, H.S., Latge, A., Oliveira, L.E. (2004). Laser effects on donor states in low-dimensional semiconductor heterostructures. Physical Review B, 70, 153303.
  • Brum, J.A., Bastard, G., Guillemot, C. (1984). Screened Columbic impurity bound states in semiconductor quantum wells. Physical Review B, 30, 905-908.
  • Burileanu, L.M. (2014). Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields. Journal of Luminescence, 145, 684-689.
  • Chakraborty, T., Manaselyan, A., Barseghyan, M., Laroze, D. (2018). Controllable continuous evolution of electronic states in a single quantum ring. Physical Review B, 97, 041304.
  • Chang, E., Hone, D. (1988). Screened Coulomb interaction and melting in two dimensions. Journal de Physique France, 49, 25-34.
  • Coden, D.S.A., Romero, R.H., Ferron, A., Gomez, S.S. (2017). Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity. Physica E 86, 36-43.
  • Fanyao, O., Fonseca, A.L.A., Nunes, O.A.C. (1996). Intense laser field effect on confined hydrogenic impurities in quantum semiconductors. physica status solidi (b), 197, 349-357.
  • Ganguly, J., Saha, S., Bera, A., Ghosh, M. (2017). Exploring electro-optic effect and third-order nonlinear optical susceptibility of impurity doped quantum dots: Interplay between hydrostatic pressure, temperature and noise. Optics Communications, 387, 166-173.
  • Halonen, V., PietilAainen, P., Chakraborty, T. (1996). Optical-absorption spectra of quantum dots and rings with a repulsive scattering centre. Europhysics Letters, 33, 377-382.
  • Hashemi, G., Rezaei, G. (2015). Effects of external fields, the hydrostatic pressure and temperature on the electronic Raman scattering of a hydrogenic impurity in a two-dimensional parabolic quantum dot. Superlattices and Microstructures, 85, 161-172.
  • Huang, J. (2013). Effect of the charges of impurity on the refractive index changes in parabolic quantum dot. Physica B, 409, 16-20.
  • Jiao, L., Ho, Y.K. (2014). Calculation of screened Coulomb potential matrices and its application to He bound and resonant states. Physical Review A, 90, 012521.
  • Kilic, D.G., Sakiroglu, S., Sokmen, I. (2018). Impurity-related optical properties of a laser-driven quantum dot. Physica E, 49, 50-57.
  • Kirak, V., Bhardwaj, S.B., Singh, R.M., Chand, F. (2023). Optical properties and effect of magnetic field on energy spectra of a GaAs spherical quantum dot. Applied Physics A, 128, 459.
  • Kumar, V., Bhardwaj, S.B., Singh, R.M., Chand, F. (2023). Optical properties and effect of magnetic field on energy spectra of a GaAs spherical quantum dot. The European Physical Journal Plus, 138, 191.
  • Kwon, Y.D. (2006). Theory of the screened Coulomb field generated by impurity ions in semiconductors. Physical Review B, 73, 165210.
  • Li, N., Guo, K.X., Shao, S., Liu, G.H. (2012). Polaron effects on the optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system. Optical Materials, 34, 1459-1463.
  • Lima, F.M.S., Amato, M.A., Nunes, O.A.C., Fonseca, A.L.A., Enders, B.G. (2009). Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. Journal of Applied Physics, 105, 123111.
  • Liu, G., Guo, K., Wang, C. (2012). Linear and nonlinear optical properties in a disk-shaped quantum dot with a parabolic potential plus a hyperbolic potential in a static magnetic field. Physica B, 407, 2334-2339.
  • Mikhail, I.F.I., Shafee, A.M. (2017). Optical absorption in a disk-shaped quantum dot in the presence of an impurity. Physica B, 507, 142-146.
  • Mora-Ramos, M.E., Duque, C., Kasapoglu, E., Sari, H., Sokmen, I. (2012). Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields. Journal of Luminescence, 132, 901-913.
  • Niculescu, E.C., Stan, C., Tiriba, G., Tru¸sca, C. (2017). Magnetic field control of absorption coefficient and group index in an impurity doped quantum disc. The European Physical Journal B, 90, 100.
  • Ping, E.X., Jiang, H.X. (1993). Effect of charge-carrier screening on the exciton binding energy in GaAs/AlxGa1-xAs quantum wells. Physical Review B, 47, 2101-2106.
  • Pont, M., Gavrila, M. (1990). Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization. Physical Review Letters, 65, 2362-2365.
  • Poszwa, A. (2014). Dirac electron in the two-dimensional Debye–Yukawa potential. Physica Scripta, 89, 065401.
  • Sarkar, S., Ghosh, A.P., Mandal, A., Ghosh, M. (2016). Modulating nonlinear optical properties of impurity doped quantum dots via the interplay between anisotropy and Gaussian white noise. Superlattices and Microstructures, 90, 297-307.
  • Sheng, W., Yun, K., Xianli, L. (2016). Donor impurity-related optical absorption coefficients and refractive index changes in a rectangular GaAs quantum dot in the presence of electric field. Journal of Semiconductors, 37, 112001.
  • Shojaei, S., Vala, A.S. (2015). Nonlinear optical rectification of hydrogenic impurity in a disk-like parabolic quantum dot: The role of applied magnetic field. Physica E, 70, 108-112.
  • Soylu, A., Boztosun, I., (2008). Asymptotic iteration method solution of the energy spectrum of two-dimensional screened donor in a magnetic field. Physica E, 40, 443-448.
  • Taseli, H., Eid, R. (1995). Eigenvalues of the Two-Dimensional Schrodinger Equation with Nonseparable Potentials. International Journal of Quantum Chemistr, 59, 183-201.
  • Ungan, F., Bahar, M.K. (2019). Optical specifications of laser-induced Rosen-Morse quantum well. Optical Materials, 90, 231-237.
  • Soltani-Vala, A., Barvestani, J. (2017). Effects of anisotropy on the optical rectification of a disk-like quantum dot with donor impurity in external electric and magnetic fields. Physica B, 518, 88-93.
  • Varshni, Y.P. (2001). Superlattices and Microstructures, 29, 233-238.
  • Villalba, V.M., Pino, R. (2002). Energy spectrum of a two-dimensional screened donor in a constant magnetic field of arbitrary strength. Physica B, 315, 289-296.
  • Vinasco, J.A., Radu, A., Restrepo, R.L., Morales, A.L., Mora-Ramos, M.E., Duque, C.A., (2019).
  • Magnetic field effects on intraband transitions in elliptically polarized laser-dressed quantum rings. Optical Materials, 91, 309-320.
  • Wang, W., Xu, L., Wu, B., Zhang, S., Wei, X. (2017). Effect of intense terahertz laser and magnetic fields on the binding energy and the transition energy of shallow impurity in a bulk semiconductor. Physica B, 521, 122-127.
  • Wang, W., Duppen, B.V., Peeters, F.M. (2019). Intense-terahertz-laser-modulated magnetopolaron effect on shallow-donor states in the presence of magnetic field in the Voigt configuration. Physical Review B, 99, 014114.
  • Xie, W. (2009). Nonlinear optical rectification of a hydrogenic impurity in a disc-like quantum dot. Physica B, 404, 4142-4145.
  • Xiao, J-L. (2016). Effects of temperature and hydrogen-like impurity on the coherence time of RbCl parabolic quantum dot qubit. Superlattices and Microstructures, 90, 308-312.
  • Xie, W. (2010). Laser radiation effects on optical absorptions and refractive index in a quantum dot. Optics Communications, 283, 3703-3706.
  • Yuan, J-H., Zhang, Y., Guo, X., Zhang, J., Mo, H. (2015). The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. Physica E, 68, 232-238.
Year 2024, Volume: 3 Issue: 1, 1 - 11, 31.12.2024

Abstract

References

  • Aktas, S., Kes, H., Boz, F.K. (2016). Control of a resonant tunneling structure by intense laser fields. Superlattices and Microstructures, 98, 220-227.
  • Al-Ahmadi, A. Fingerprints in the Optical and Transport Properties of Quantum Dots (1st ed.) Croatia: InTech. (2012).
  • Al-Hayek, I., Sandouqa, A.S. (2015). Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlattices and Microstructures, 85, 216-225.
  • Barseghyan, M.G. (2015). Physica E, 69, Electronic states of coupled quantum dot-ring structure under lateral electric field with and without a hydrogenic donor impurity. 219-223.
  • Bejan, D., Niculescu, E.C. (2016). Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field. The European Physical Journal B, 89, 138.
  • Bera, A., Ganguly, J., Saha, S., Ghosh, M. (2015). Interplay between noise and position-dependent dielectric screening function in modulating nonlinear optical properties of impurity doped quantum dots. Optik, 127, 6771-6778.
  • Brandi, H.S., Latge, A., Oliveira, L.E. (2004). Laser effects on donor states in low-dimensional semiconductor heterostructures. Physical Review B, 70, 153303.
  • Brum, J.A., Bastard, G., Guillemot, C. (1984). Screened Columbic impurity bound states in semiconductor quantum wells. Physical Review B, 30, 905-908.
  • Burileanu, L.M. (2014). Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields. Journal of Luminescence, 145, 684-689.
  • Chakraborty, T., Manaselyan, A., Barseghyan, M., Laroze, D. (2018). Controllable continuous evolution of electronic states in a single quantum ring. Physical Review B, 97, 041304.
  • Chang, E., Hone, D. (1988). Screened Coulomb interaction and melting in two dimensions. Journal de Physique France, 49, 25-34.
  • Coden, D.S.A., Romero, R.H., Ferron, A., Gomez, S.S. (2017). Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity. Physica E 86, 36-43.
  • Fanyao, O., Fonseca, A.L.A., Nunes, O.A.C. (1996). Intense laser field effect on confined hydrogenic impurities in quantum semiconductors. physica status solidi (b), 197, 349-357.
  • Ganguly, J., Saha, S., Bera, A., Ghosh, M. (2017). Exploring electro-optic effect and third-order nonlinear optical susceptibility of impurity doped quantum dots: Interplay between hydrostatic pressure, temperature and noise. Optics Communications, 387, 166-173.
  • Halonen, V., PietilAainen, P., Chakraborty, T. (1996). Optical-absorption spectra of quantum dots and rings with a repulsive scattering centre. Europhysics Letters, 33, 377-382.
  • Hashemi, G., Rezaei, G. (2015). Effects of external fields, the hydrostatic pressure and temperature on the electronic Raman scattering of a hydrogenic impurity in a two-dimensional parabolic quantum dot. Superlattices and Microstructures, 85, 161-172.
  • Huang, J. (2013). Effect of the charges of impurity on the refractive index changes in parabolic quantum dot. Physica B, 409, 16-20.
  • Jiao, L., Ho, Y.K. (2014). Calculation of screened Coulomb potential matrices and its application to He bound and resonant states. Physical Review A, 90, 012521.
  • Kilic, D.G., Sakiroglu, S., Sokmen, I. (2018). Impurity-related optical properties of a laser-driven quantum dot. Physica E, 49, 50-57.
  • Kirak, V., Bhardwaj, S.B., Singh, R.M., Chand, F. (2023). Optical properties and effect of magnetic field on energy spectra of a GaAs spherical quantum dot. Applied Physics A, 128, 459.
  • Kumar, V., Bhardwaj, S.B., Singh, R.M., Chand, F. (2023). Optical properties and effect of magnetic field on energy spectra of a GaAs spherical quantum dot. The European Physical Journal Plus, 138, 191.
  • Kwon, Y.D. (2006). Theory of the screened Coulomb field generated by impurity ions in semiconductors. Physical Review B, 73, 165210.
  • Li, N., Guo, K.X., Shao, S., Liu, G.H. (2012). Polaron effects on the optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system. Optical Materials, 34, 1459-1463.
  • Lima, F.M.S., Amato, M.A., Nunes, O.A.C., Fonseca, A.L.A., Enders, B.G. (2009). Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. Journal of Applied Physics, 105, 123111.
  • Liu, G., Guo, K., Wang, C. (2012). Linear and nonlinear optical properties in a disk-shaped quantum dot with a parabolic potential plus a hyperbolic potential in a static magnetic field. Physica B, 407, 2334-2339.
  • Mikhail, I.F.I., Shafee, A.M. (2017). Optical absorption in a disk-shaped quantum dot in the presence of an impurity. Physica B, 507, 142-146.
  • Mora-Ramos, M.E., Duque, C., Kasapoglu, E., Sari, H., Sokmen, I. (2012). Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields. Journal of Luminescence, 132, 901-913.
  • Niculescu, E.C., Stan, C., Tiriba, G., Tru¸sca, C. (2017). Magnetic field control of absorption coefficient and group index in an impurity doped quantum disc. The European Physical Journal B, 90, 100.
  • Ping, E.X., Jiang, H.X. (1993). Effect of charge-carrier screening on the exciton binding energy in GaAs/AlxGa1-xAs quantum wells. Physical Review B, 47, 2101-2106.
  • Pont, M., Gavrila, M. (1990). Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization. Physical Review Letters, 65, 2362-2365.
  • Poszwa, A. (2014). Dirac electron in the two-dimensional Debye–Yukawa potential. Physica Scripta, 89, 065401.
  • Sarkar, S., Ghosh, A.P., Mandal, A., Ghosh, M. (2016). Modulating nonlinear optical properties of impurity doped quantum dots via the interplay between anisotropy and Gaussian white noise. Superlattices and Microstructures, 90, 297-307.
  • Sheng, W., Yun, K., Xianli, L. (2016). Donor impurity-related optical absorption coefficients and refractive index changes in a rectangular GaAs quantum dot in the presence of electric field. Journal of Semiconductors, 37, 112001.
  • Shojaei, S., Vala, A.S. (2015). Nonlinear optical rectification of hydrogenic impurity in a disk-like parabolic quantum dot: The role of applied magnetic field. Physica E, 70, 108-112.
  • Soylu, A., Boztosun, I., (2008). Asymptotic iteration method solution of the energy spectrum of two-dimensional screened donor in a magnetic field. Physica E, 40, 443-448.
  • Taseli, H., Eid, R. (1995). Eigenvalues of the Two-Dimensional Schrodinger Equation with Nonseparable Potentials. International Journal of Quantum Chemistr, 59, 183-201.
  • Ungan, F., Bahar, M.K. (2019). Optical specifications of laser-induced Rosen-Morse quantum well. Optical Materials, 90, 231-237.
  • Soltani-Vala, A., Barvestani, J. (2017). Effects of anisotropy on the optical rectification of a disk-like quantum dot with donor impurity in external electric and magnetic fields. Physica B, 518, 88-93.
  • Varshni, Y.P. (2001). Superlattices and Microstructures, 29, 233-238.
  • Villalba, V.M., Pino, R. (2002). Energy spectrum of a two-dimensional screened donor in a constant magnetic field of arbitrary strength. Physica B, 315, 289-296.
  • Vinasco, J.A., Radu, A., Restrepo, R.L., Morales, A.L., Mora-Ramos, M.E., Duque, C.A., (2019).
  • Magnetic field effects on intraband transitions in elliptically polarized laser-dressed quantum rings. Optical Materials, 91, 309-320.
  • Wang, W., Xu, L., Wu, B., Zhang, S., Wei, X. (2017). Effect of intense terahertz laser and magnetic fields on the binding energy and the transition energy of shallow impurity in a bulk semiconductor. Physica B, 521, 122-127.
  • Wang, W., Duppen, B.V., Peeters, F.M. (2019). Intense-terahertz-laser-modulated magnetopolaron effect on shallow-donor states in the presence of magnetic field in the Voigt configuration. Physical Review B, 99, 014114.
  • Xie, W. (2009). Nonlinear optical rectification of a hydrogenic impurity in a disc-like quantum dot. Physica B, 404, 4142-4145.
  • Xiao, J-L. (2016). Effects of temperature and hydrogen-like impurity on the coherence time of RbCl parabolic quantum dot qubit. Superlattices and Microstructures, 90, 308-312.
  • Xie, W. (2010). Laser radiation effects on optical absorptions and refractive index in a quantum dot. Optics Communications, 283, 3703-3706.
  • Yuan, J-H., Zhang, Y., Guo, X., Zhang, J., Mo, H. (2015). The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. Physica E, 68, 232-238.
There are 48 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications, Lasers and Quantum Electronics, Terahertz Physics, Condensed Matter Physics (Other)
Journal Section Research Articles
Authors

Dilara Gül Kılıç 0000-0003-4759-5868

Serpil Şakiroğlu

Publication Date December 31, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Kılıç, D. G., & Şakiroğlu, S. (2024). Electronic and optical properties of a screened donor impurity in a two-dimensional quantum dot under THz laser field. Karatekin University Journal of Science, 3(1), 1-11.