Review
BibTex RIS Cite

Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue

Year 2024, , 253 - 263, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1082047

Abstract

Worldwide, the incidence of overweight and obesity is increasing day by day, and this makes the control of body weight and complications a primary health problem. Weight loss diet therapy has long been a primary role in the prevention and management of obesity. Evidence supporting the specific anti-obesity effects of certain nutrient components, in particular, polyphenolic compounds, are increasing, as well as a strategy to limit energy intake to achieve control of body weight. Active brown adipose tissue in adult individuals is gaining interest as a new and feasible target for controlling body weight by triggering and increasing energy expenditure. Flavonoids are one of the polyphenolic compounds that draw attention by regulating non-shivering thermogenesis. Although each flavonoid has its health benefits; many phytochemical compounds classified as flavonoids have an anti-obesity effect by regulating oxidation, synthesis, uptake, and transport of fatty acids. In this study, current studies on the therapeutic effect of flavonoids on obesity by regulating energy expenditure through various mechanisms of action in brown adipose tissue are reviewed.

References

  • Obesity and overweight 2018 [Available from: https://www.who.int/en/news- room/fact-sheets/detail/obesity-and-overweight.
  • Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E, Predimed Investigators. Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 2015;58(1):50-60. DOI: 10.1016/j.pcad.2015.04.003
  • Cherniack EP. Polyphenols: planting the seeds of treatment for the metabolic syndrome. Nutrition 2011;27(6):617-623. DOI: 10.1016/j.nut.2010.10.013
  • Amiot M, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes Rev 2016;17(7):573-586. DOI: 10.1111/obr.12409
  • Andersen OM, Markham KR. Flavonoids: chemistry, biochemistry and applications: CRC press; 2005. DOI:10.1201/9781420039443
  • Cushnie TT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011;38(2):99-107. DOI: 10.1016/j.ijantimicag.2011.02.014
  • Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 2009;8(3):229-235. DOI: 10.2174/187152809788681029
  • Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 2007;51(1):116-134. DOI: 10.1002/mnfr.2006
  • Silvester AJ, Aseer KR, Yun JW. Dietary polyphenols and their roles in fat browning. J Nutr Biochem 2019;64:1-12. DOI: 10.1016/j.nutbio.2018.09.02
  • Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007;293(2):E444-E52. DOI: 10.1152/ajpendo.00691.2006
  • Cannon B, Nedergaard J. Thermogenesis challenges the adipostat hypothesis for body- weight control: Symposium on ‘Frontiers in adipose tissue biology’. Proc Nutr Soc 2009;68(4):401-407. DOI: 10.1017/S002966510999025
  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn R. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360(15):1509-1517. DOI: 10.1056/NEJMoa0810780
  • Wang Q, Zhang M, Xu M, Gu W, Xi Y, Qi L, Li B, Wang W. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS One 2015;10(4):e0123795. DOI: 10.1371/journal.pone.0123795
  • Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, Lidell ME, Saraf MK, Labbe SM, Hurren NM, Yfanti C. Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014;63:4089-4099. DOI: 10.2337/db14-0746
  • Demirci Ş, Gün C. Adipoz Doku ve Adipoz Dokudan Salınan Bazı Proteinler. MAKÜ Sag Bil Enst Derg 2017;5(2):155-179 (Turkish). DOI: 10.24998/maeusabed.338105
  • Coelho M, Oliveira T, Fernandes R. State of the art paper Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013;9(2):191-200. DOI: 10.5114/aoms.2013.33181
  • Enerbäck S. Brown adipose tissue in humans. Int J Obes 2010;34(S1):543-546. DOI: 10.1038/ijo.2010.183
  • Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150(2):366-376. DOI: 10.1016/j.cell.2012.05.016
  • Whittle AJ, López M, Vidal-Puig A. Using brown adipose tissue to treat obesity–the central issue. Trends Mol Med 2011;17(8):405-411. DOI: 10.1016/j.molmed.2011.04.001
  • Castillo-Quan JI. From white to brown fat through the PGC-1α-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 2012;5(3):293. DOI: 0.1242/dmm.009894
  • Kucukkaraca H, Sogut MU. Investigation of The Effect of Exercise on Irisin Hormone in Experimentally Induced Diabetic Rats. Int J Health Serv 2017;2(2):51-57. DOI:10.23884/ijhsrp.2017.2.2.03
  • Zhang X, Zhang QX, Wang X, Zhang L, Qu W, Bao B, Liu CA, Liu J. Dietary luteolin activates browning and thermogenesis in mice through an AMPK/PGC1alpha pathway-mediated mechanism. Int J Obes (Lond) 2016;40(12):1841-1849. DOI: 10.1038/ijo.2016.108
  • Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells 2014;6(1):33-42. DOI: 10.4252/wjsc.v6.i1.33
  • Reddy NL, Tan BK, Barber TM, Randeva HS. Brown adipose tissue: Endocrine determinants of function and therapeutic manipulation as a novel treatment strategy for obesity. BMC Obes 2014;1:13. DOI: 10.1186/s40608-014-0013-5
  • Mele L, Bidault G, Mena P, Crozier A, Brighenti F, Vidal-Puig A, Del Rio D. Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Adv Nutr 2017;8(5):694-704. DOI: 10.3945/an.117.015792
  • Morrison SF, Madden CJ, Tupone D. Central control of brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 2012;3:5. DOI: 10.3389/fendo.2012.00005
  • Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol Rev 2004;84(1):277-359. DOI: 10.1152/physrev.00015.2003
  • Nedergaard J, Bengtsson T, Cannon B. New powers of brown fat: Fighting the metabolic syndrome. Cell Metab 2011;13(3):238-240. DOI: 10.1016/j.cmet.2011.02.009
  • López M, Alvarez CV, Nogueiras R, Diéguez C. Energy balance regulation by thyroid hormones at central level. Trends Mol Med 2013;19(7):418-427. DOI: 10.1016/j.molmed.2013.04.004
  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006;439(7075):484. DOI: 10.1038/nature04330
  • Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature 2014;510(7503):76. DOI: 10.1038/nature13477
  • Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH. Brown- fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 2013;495(7441):379. DOI: 10.1038/nature11943
  • Kern PA, Finlin BS, Zhu B, Rasouli N, McGehee Jr RE, Westgate PM, Dupont-Versteegden EE. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab 2014;99(12):E2772-E9. DOI: 10.1210/jc.2014-2440
  • Hanssen MJ, Hoeks J, Brans B, Van Der Lans AA, Schaart G, Van Den Driessche JJ, Jorgensen JA, Boekschoten MV, Hesselink MK, Haavekes B, Kersten S. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 2015;21(8):863. DOI: 10.1038/nm.3891
  • Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM Choi HY, Cho SG. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 2016;17(4):569. DOI: 10.3390/ijms17040569
  • Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 2013;4(6):831-844. DOI: 10.1039/c3fo60063g
  • Vernarelli JA, Lambert JD. Flavonoid intake is inversely associated with obesity and C- reactive protein, a marker for inflammation, in US adults. Nutr Diabetes 2017;7(5):e276. DOI: 10.1038/nutd.2017.22
  • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic Peroxisome Proliferator-activated Receptor γ (PPARγ) Activation of Epididymally Derived White Adipocyte Cultures Reveals a Population of Thermogenically Competent, UCP1- containing Adipocytes Molecularly Distinct from Classic Brown Adipocytes. J Biol Chem 2010;285(10):7153-7164. DOI: 10.1074/jbc.M109.053942
  • Vernochet C, Peres SB, Davis KE, McDonald ME, Qiang L, Wang H, Scherer PE, Farmer SR. C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists. Mol Cell Biol 2009;29(17):4714-4728. DOI: 10.1128/MCB.01899-08
  • Rong JX, Qiu Y, Hansen MK, Zhu L, Zhang V, Xie M, Okamoto Y, Mattie MD, Higashiyama H, Asano S, Strum JC. Adipose Mitochondrial Biogenesis Is Suppressed in db/db and High-Fat Diet–Fed Mice and Improved by Rosiglitazone. Diabetes 2007;56(7):1751-1760. DOI: 10.2337/db06-1135
  • Rachid TL, Silva-Veiga FM, Graus-Nunes F, Bringhenti I, Mandarim-de-Lacerda CA, Souza-Mello V. Differential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: A study in the subcutaneous white adipose tissue of obese male mice. PLoS One 2018;13(1):e0191365. DOI: 10.1371/journal.pone.0191365
  • Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, Roussel B, Tavernier G, Marques MA, Moro C, Guillou H. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab 2016;5(5):352-365. DOI: 10.1016/j.molmet.2016.03.002
  • Lasar D, Rosenwald M, Kiehlmann E, Balaz M, Tall B, Opitz L, Lidell ME, Zamboni N, Krznar P, Sun W, Varga L. Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Rep 2018;22(3):760-773. DOI: 10.1016/j.celrep.2017.12.067
  • Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL. Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014;25(1):1-18. DOI: 10.1016/j.jnutbio.2013.09.001
  • Manach C, Donovan JL. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 2004;38(8):771-786. DOI: 10.1080/10715760410001727858
  • Woodman OL, Meeker WF, Boujaoude M. Vasorelaxant and Antioxidant Activity of Flavonols and Flavones: Structure-Activity Relationships. J Cardiovasc Pharmacol 2005;46(3):302-309. DOI: 10.1097/01.fjc.0000175431.62626.07
  • Miean KH, Mohamed S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J Agric Food Chem 2001;49(6):3106-3112. DOI: 10.1021/jf000892m
  • Tsutsumi R, Yoshida T, Nii Y, Okahisa N, Iwata S, Tsukayama M, Hashimoto R, Taniguchi Y, KSakaue H, Hosaka T, Shuto E. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr Metab (Lond) 2014;11(1):32. DOI: 10.1186/1743-7075-11-32
  • Choi JH, Yun JW. Chrysin induces brown fat–like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition 2016;32(9):1002-1010. DOI: 10.1016/j.nut.2016.02.007
  • Shen Y, Song SJ, Keum N, Park T. Olive Leaf Extract Attenuates Obesity in High-Fat Diet-Fed Mice by Modulating the Expression of Molecules Involved in Adipogenesis and Thermogenesis. Evid Based Complement Alternat Med 2014;2014:12. DOI: 10.1155/2014/971890
  • Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, Dohnalova L, Braverman S, Rozin S, Malitsky S, Dori-Bachash M. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 2016;540:544. DOI: 10.1038/nature20796
  • Bhagwat S, Haytowitz DB, Wasswa-Kintu SI, Holden JM. USDA Develops a Database for Flavonoids to Assess Dietary Intakes. Procedia Food Sci 2013;2:81-86. DOI:10.1016/j.profoo.2013.04.013
  • Iwashina T. The structure and distribution of the flavonoids in plants. J Plant Res 2000;113(3):287-299. DOI:10.1007/PL00013940
  • Moon J, Do H-J, Kim OY, Shin M-J. Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 2013;58:347-354. DOI: 10.1016/j.fct.2013.05.006
  • Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem 2017;42:62-71. DOI: 10.1016/j.jnutbio.2016.12.018
  • Yuan X, Wei G, You Y, Huang Y, Lee HJ, Dong M, Lin J, Hu T, Zhang C, Zhou H. Rutin ameliorates obesity through brown fat activation. FASEB J 2017;31(1):333-345. DOI: 10.1096/fj.201600459RR
  • Hu T, Yuan X, Wei G, Luo H, Lee HJ, Jin W. Myricetin-induced brown adipose tissue activation prevents obesity and insulin resistance in db/db mice. Eur J Nutr 2018;57(1):391- 403. DOI: 10.1007/s00394-017-1433-z
  • Varshney R, Mishra R, Das N, Sircar D, Roy P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: An in vitro and in vivo study. J Funct Foods 2019;59:194-205. DOI:10.1016/j.jff.2019.05.004
  • Dong J, Zhang X, Zhang L, Bian H-X, Xu N, Bao B, Liu J. Quercetin reduces obesity- associated adipose tissue macrophage infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 2014. DOI: 10.1194/jlr.M038786
  • Hu T, Yuan X, Ye R, Zhou H, Lin J, Zhang C, Zhang H, Wei G, Dong M, Huang Y, Lim W. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat. J Nutr Biochem 2017;47:21-28. DOI: 10.1016/j.jnutbio.2017.04.012
  • Klimczak I, Małecka M, Szlachta M, Gliszczyńska-Świgło A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J Food Compost Anal 2007;20(3):313-322. DOI:10.1016/j.jfca.2006.02.012
  • Brett GM, Hollands W, Needs PW, Teucher B, R. Dainty J, Davis BD, Brodbelt JS, Kroon PA. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br J Nutr 2008;101(5):664-675. DOI: 10.1017/S000711450803081X
  • Choi J, Kim K-J, Koh E-J, Lee B-Y. Altered Gelidium elegans Extract-stimulated Beige-like Phenotype Attenuates Adipogenesis in 3T3-L1 Cells. J Food Nutr Res 2016;4(7):448-453. DOI: 10.12691/jfnr-4-7-6
  • Shen J, Nakamura H, Fujisaki Y, Tanida M, Horii Y, Fuyuki R, Takumi h, Shiraishi K, Kometani T, Nagai K. Effect of 4G-α- glucopyranosyl hesperidin on brown fat adipose tissue- and cutaneous-sympathetic nerve activity and peripheral body temperature. Neurosci Lett 2009;461(1):30-35. DOI: 10.1016/j.neulet.2009.05.067
  • Choi J, Kim K-J, Koh E-J, Lee B-Y. Gelidium elegans Regulates the AMPK-PRDM16- UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet. Nutrients 2017;9(4):342. DOI: 10.3390/nu9040342
  • Aron PM, Kennedy JA. Flavan‐3‐ols: Nature, occurrence and biological activity. Mol Nutr Food Res 2008;52(1):79-104. DOI: 10.1002/mnfr.200700137
  • Chun OK, Chung SJ, Song WO. Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults. J Nutr 2007;137(5):1244-1252. DOI: 10.1093/jn/137.5.1244
  • Song WO, Chun OK. Tea Is the Major Source of Flavan-3-ol and Flavonol in the U.S. Diet. J Nutr 2008;138(8):1543S-1547S. DOI: 10.1093/jn/138.8.1543S
  • Scalbert A, Williamson G. Dietary Intake and Bioavailability of Polyphenols. J Nutr 2000;130(8):2073S-2085S. DOI: 10.1093/jn/130.8.2073S
  • Tsao R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010;2(12):1231. DOI: 10.3390/nu2121231
  • Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: Interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes 2000;24:252. DOI: 10.1038/sj.ijo.0801101
  • Choo JJ. Green tea reduces body fat accretion caused by high-fat diet in rats through β- adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem 2003;14(11):671-676. DOI: 10.1016/j.jnutbio.2003.08.005
  • Nomura S, Ichinose T, Jinde M, Kawashima Y, Tachiyashiki K, Imaizumi K. Tea catechins enhance the mRNA expression of uncoupling protein 1 in rat brown adipose tissue. J Nutr Biochem 2008;19(12):840-847. DOI: 10.1016/j.jnutbio.2007.11.005
  • Gosselin C, Haman F. Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men. Br J Nutr 2012;110(2):282-288. DOI: 10.1017/S0007114512005089
  • Yan J, Zhao Y, Zhao B. Green tea catechins prevent obesity through modulation of peroxisome proliferator-activated receptors. Sci China Life Sci 2013;56(9):804-810. DOI: 10.1007/s11427-013-4512-2
  • Matsumura Y, Nakagawa Y, Mikome K, Yamamoto H, Osakabe N. Enhancement of energy expenditure following a single oral dose of Flavan-3-Ols associated with an increase in Catecholamine secretion. PLoS One 2014;9(11):e112180. DOI: 10.1371/journal.pone.0112180
  • Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Oolong, black and pu- erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct 2014;5(10):2420-2429. DOI:10.1039/C4FO00095A
  • Nirengi S, Amagasa S, Homma T, Yoneshiro T, Matsumiya S, Kurosawa Y, Sakane N, Ebi K, Saito M, Hamaoka T. Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. SpringerPlus 2016;5(1):1363. DOI: 10.1186/s40064-016-3029-0
  • Rabadan-Chávez G, Quevedo-Corona L, Garcia AM, Reyes-Maldonado E, Jaramillo- Flores ME. Cocoa powder, cocoa extract and epicatechin attenuate hypercaloric diet-induced obesity through enhanced β-oxidation and energy expenditure in white adipose tissue. J Funct Foods 2016;20:54-67. DOI:10.1016/j.jff.2015.10.016
  • Gutiérrez-Salmeán G, Ortiz-Vilchis P, Vacaseydel CM, Garduño-Siciliano L, Chamorro-Cevallos G, Meaney E, Villafana S, Villarreal F, Ceballos G, Ramirez-Sanchez I. Effects of (−)-epicatechin on a diet-induced rat model of cardiometabolic risk factors. Eur J Pharmacol 2014;728:24-30. DOI: 10.1016/j.ejphar.2014.01.053
  • Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 2017;61(1):1361779. DOI: 10.1080/16546628.2017.1361779
  • Zhang Z, Kou X, Fugal K, McLaughlin J. Comparison of HPLC Methods for Determination of Anthocyanins and Anthocyanidins in Bilberry Extracts. J Agric Food Chem 2004;52(4):688-691. DOI: 10.1021/jf034596w
  • You Y, Yuan X, Lee HJ, Huang W, Jin W, Zhan J. Mulberry and mulberry wine extract increase the number of mitochondria during brown adipogenesis. Food Funct 2015;6(2):401-408. DOI: 10.1039/c4fo00719k
  • Matsukawa T, Villareal MO, Motojima H, Isoda H. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. J Nutr Biochem 2017;40:77-85. DOI: 10.1016/j.jnutbio.2016.09.018
  • Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-Activated Protein Kinase in diabetic mice. J Nutr 2010;140(3):527-533. DOI: 10.3945/jn.109.118216
  • You Y, Yuan X, Liu X, Liang C, Meng M, Huang Y, Han X, Guo J, Guo Y, Ren C, Zhang Q. Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function. Mol Nutr Food Res 2017;61(11). DOI: 10.1002/mnfr.201700261
  • Murphy PA, Song T, Buseman G, Barua K, Beecher GR, Trainer D, Holden J. Isoflavones in Retail and Institutional Soy Foods. J Agric Food Chem 1999;47(7):2697-2704. DOI: 10.1021/jf9811440
  • Aziz SA, Wakeling LA, Miwa S, Alberdi G, Hesketh JE, Ford D. Metabolic programming of a beige adipocyte phenotype by genistein. Mol Nutr Food Res 2017;61(2):1600574. DOI: 10.1002/mnfr.201600574
  • Gautam J, Khedgikar V, Kushwaha P, Choudhary D, Nagar GK, Dev K, Dixit P, Singh D, Maurya R, Trivedi R. Formononetin, an isoflavone, activates AMP-activated protein kinase/beta-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss. Br J Nutr 2017;117(5):645-661. DOI: 10.1017/S0007114517000149
  • Lephart ED, Porter JP, Lund TD, Bu L, Setchell KD, Ramoz G, Crowley WR. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats. Nutr Metab (Lond) 2004;1(1):16. DOI: 10.1186/1743-7075-1-16
  • Crespillo A, Alonso M, Vida M, Pavón F, Serrano A, Rivera P, Romero-Zerbo Y, Fernandez-Llebrez P, Martinez A, Perez-Valero V, Bermudez-Silva FJ. Reduction of body weight, liver steatosis and expression of stearoyl-CoA desaturase 1 by the isoflavone daidzein in diet-induced obesity. Br J Pharmacol 2011;164(7):1899-1915. DOI: 0.1111/j.1476-5381.2011.01477.x
  • Kamiya T, Nagamine R, Sameshima-Kamiya M, Tsubata M, Ikeguchi M, Takagaki K. The isoflavone-rich fraction of the crude extract of the Puerariae flower increases oxygen consumption and BAT UCP1 expression in high-fat diet-fed mice. Glob J Health Sci 2012;4(5):147-155. DOI: 10.5539/gjhs.v4n5p147
  • Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005;45(4):287-306. DOI: 10.1080/1040869059096
  • Law J, Morris DE, Izzi-Engbeaya C, Salem V, Coello C, Robinson L, Jayasinghe M, Scott R, Gunn R, Rabiner E, Tan T. Thermal imaging is a noninvasive alternative to PET/CT for measurement of brown adipose tissue activity in humans. J Nucl Med 2018;59(3):516-522. DOI: 10.2967/jnumed.117.190546
  • Tapas AR, Sakarkar D, Kakde R. Flavonoids as nutraceuticals: A review. Trop J Pharm Res 2008;7:1089-1099. DOI:10.4314/tjpr.v7i3.14693
Year 2024, , 253 - 263, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1082047

Abstract

References

  • Obesity and overweight 2018 [Available from: https://www.who.int/en/news- room/fact-sheets/detail/obesity-and-overweight.
  • Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E, Predimed Investigators. Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 2015;58(1):50-60. DOI: 10.1016/j.pcad.2015.04.003
  • Cherniack EP. Polyphenols: planting the seeds of treatment for the metabolic syndrome. Nutrition 2011;27(6):617-623. DOI: 10.1016/j.nut.2010.10.013
  • Amiot M, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes Rev 2016;17(7):573-586. DOI: 10.1111/obr.12409
  • Andersen OM, Markham KR. Flavonoids: chemistry, biochemistry and applications: CRC press; 2005. DOI:10.1201/9781420039443
  • Cushnie TT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011;38(2):99-107. DOI: 10.1016/j.ijantimicag.2011.02.014
  • Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 2009;8(3):229-235. DOI: 10.2174/187152809788681029
  • Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 2007;51(1):116-134. DOI: 10.1002/mnfr.2006
  • Silvester AJ, Aseer KR, Yun JW. Dietary polyphenols and their roles in fat browning. J Nutr Biochem 2019;64:1-12. DOI: 10.1016/j.nutbio.2018.09.02
  • Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007;293(2):E444-E52. DOI: 10.1152/ajpendo.00691.2006
  • Cannon B, Nedergaard J. Thermogenesis challenges the adipostat hypothesis for body- weight control: Symposium on ‘Frontiers in adipose tissue biology’. Proc Nutr Soc 2009;68(4):401-407. DOI: 10.1017/S002966510999025
  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn R. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360(15):1509-1517. DOI: 10.1056/NEJMoa0810780
  • Wang Q, Zhang M, Xu M, Gu W, Xi Y, Qi L, Li B, Wang W. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS One 2015;10(4):e0123795. DOI: 10.1371/journal.pone.0123795
  • Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, Lidell ME, Saraf MK, Labbe SM, Hurren NM, Yfanti C. Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014;63:4089-4099. DOI: 10.2337/db14-0746
  • Demirci Ş, Gün C. Adipoz Doku ve Adipoz Dokudan Salınan Bazı Proteinler. MAKÜ Sag Bil Enst Derg 2017;5(2):155-179 (Turkish). DOI: 10.24998/maeusabed.338105
  • Coelho M, Oliveira T, Fernandes R. State of the art paper Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013;9(2):191-200. DOI: 10.5114/aoms.2013.33181
  • Enerbäck S. Brown adipose tissue in humans. Int J Obes 2010;34(S1):543-546. DOI: 10.1038/ijo.2010.183
  • Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150(2):366-376. DOI: 10.1016/j.cell.2012.05.016
  • Whittle AJ, López M, Vidal-Puig A. Using brown adipose tissue to treat obesity–the central issue. Trends Mol Med 2011;17(8):405-411. DOI: 10.1016/j.molmed.2011.04.001
  • Castillo-Quan JI. From white to brown fat through the PGC-1α-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 2012;5(3):293. DOI: 0.1242/dmm.009894
  • Kucukkaraca H, Sogut MU. Investigation of The Effect of Exercise on Irisin Hormone in Experimentally Induced Diabetic Rats. Int J Health Serv 2017;2(2):51-57. DOI:10.23884/ijhsrp.2017.2.2.03
  • Zhang X, Zhang QX, Wang X, Zhang L, Qu W, Bao B, Liu CA, Liu J. Dietary luteolin activates browning and thermogenesis in mice through an AMPK/PGC1alpha pathway-mediated mechanism. Int J Obes (Lond) 2016;40(12):1841-1849. DOI: 10.1038/ijo.2016.108
  • Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells 2014;6(1):33-42. DOI: 10.4252/wjsc.v6.i1.33
  • Reddy NL, Tan BK, Barber TM, Randeva HS. Brown adipose tissue: Endocrine determinants of function and therapeutic manipulation as a novel treatment strategy for obesity. BMC Obes 2014;1:13. DOI: 10.1186/s40608-014-0013-5
  • Mele L, Bidault G, Mena P, Crozier A, Brighenti F, Vidal-Puig A, Del Rio D. Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Adv Nutr 2017;8(5):694-704. DOI: 10.3945/an.117.015792
  • Morrison SF, Madden CJ, Tupone D. Central control of brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 2012;3:5. DOI: 10.3389/fendo.2012.00005
  • Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol Rev 2004;84(1):277-359. DOI: 10.1152/physrev.00015.2003
  • Nedergaard J, Bengtsson T, Cannon B. New powers of brown fat: Fighting the metabolic syndrome. Cell Metab 2011;13(3):238-240. DOI: 10.1016/j.cmet.2011.02.009
  • López M, Alvarez CV, Nogueiras R, Diéguez C. Energy balance regulation by thyroid hormones at central level. Trends Mol Med 2013;19(7):418-427. DOI: 10.1016/j.molmed.2013.04.004
  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006;439(7075):484. DOI: 10.1038/nature04330
  • Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature 2014;510(7503):76. DOI: 10.1038/nature13477
  • Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH. Brown- fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 2013;495(7441):379. DOI: 10.1038/nature11943
  • Kern PA, Finlin BS, Zhu B, Rasouli N, McGehee Jr RE, Westgate PM, Dupont-Versteegden EE. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab 2014;99(12):E2772-E9. DOI: 10.1210/jc.2014-2440
  • Hanssen MJ, Hoeks J, Brans B, Van Der Lans AA, Schaart G, Van Den Driessche JJ, Jorgensen JA, Boekschoten MV, Hesselink MK, Haavekes B, Kersten S. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 2015;21(8):863. DOI: 10.1038/nm.3891
  • Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM Choi HY, Cho SG. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 2016;17(4):569. DOI: 10.3390/ijms17040569
  • Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 2013;4(6):831-844. DOI: 10.1039/c3fo60063g
  • Vernarelli JA, Lambert JD. Flavonoid intake is inversely associated with obesity and C- reactive protein, a marker for inflammation, in US adults. Nutr Diabetes 2017;7(5):e276. DOI: 10.1038/nutd.2017.22
  • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic Peroxisome Proliferator-activated Receptor γ (PPARγ) Activation of Epididymally Derived White Adipocyte Cultures Reveals a Population of Thermogenically Competent, UCP1- containing Adipocytes Molecularly Distinct from Classic Brown Adipocytes. J Biol Chem 2010;285(10):7153-7164. DOI: 10.1074/jbc.M109.053942
  • Vernochet C, Peres SB, Davis KE, McDonald ME, Qiang L, Wang H, Scherer PE, Farmer SR. C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists. Mol Cell Biol 2009;29(17):4714-4728. DOI: 10.1128/MCB.01899-08
  • Rong JX, Qiu Y, Hansen MK, Zhu L, Zhang V, Xie M, Okamoto Y, Mattie MD, Higashiyama H, Asano S, Strum JC. Adipose Mitochondrial Biogenesis Is Suppressed in db/db and High-Fat Diet–Fed Mice and Improved by Rosiglitazone. Diabetes 2007;56(7):1751-1760. DOI: 10.2337/db06-1135
  • Rachid TL, Silva-Veiga FM, Graus-Nunes F, Bringhenti I, Mandarim-de-Lacerda CA, Souza-Mello V. Differential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: A study in the subcutaneous white adipose tissue of obese male mice. PLoS One 2018;13(1):e0191365. DOI: 10.1371/journal.pone.0191365
  • Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, Roussel B, Tavernier G, Marques MA, Moro C, Guillou H. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab 2016;5(5):352-365. DOI: 10.1016/j.molmet.2016.03.002
  • Lasar D, Rosenwald M, Kiehlmann E, Balaz M, Tall B, Opitz L, Lidell ME, Zamboni N, Krznar P, Sun W, Varga L. Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Rep 2018;22(3):760-773. DOI: 10.1016/j.celrep.2017.12.067
  • Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL. Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014;25(1):1-18. DOI: 10.1016/j.jnutbio.2013.09.001
  • Manach C, Donovan JL. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 2004;38(8):771-786. DOI: 10.1080/10715760410001727858
  • Woodman OL, Meeker WF, Boujaoude M. Vasorelaxant and Antioxidant Activity of Flavonols and Flavones: Structure-Activity Relationships. J Cardiovasc Pharmacol 2005;46(3):302-309. DOI: 10.1097/01.fjc.0000175431.62626.07
  • Miean KH, Mohamed S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J Agric Food Chem 2001;49(6):3106-3112. DOI: 10.1021/jf000892m
  • Tsutsumi R, Yoshida T, Nii Y, Okahisa N, Iwata S, Tsukayama M, Hashimoto R, Taniguchi Y, KSakaue H, Hosaka T, Shuto E. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr Metab (Lond) 2014;11(1):32. DOI: 10.1186/1743-7075-11-32
  • Choi JH, Yun JW. Chrysin induces brown fat–like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition 2016;32(9):1002-1010. DOI: 10.1016/j.nut.2016.02.007
  • Shen Y, Song SJ, Keum N, Park T. Olive Leaf Extract Attenuates Obesity in High-Fat Diet-Fed Mice by Modulating the Expression of Molecules Involved in Adipogenesis and Thermogenesis. Evid Based Complement Alternat Med 2014;2014:12. DOI: 10.1155/2014/971890
  • Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, Dohnalova L, Braverman S, Rozin S, Malitsky S, Dori-Bachash M. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 2016;540:544. DOI: 10.1038/nature20796
  • Bhagwat S, Haytowitz DB, Wasswa-Kintu SI, Holden JM. USDA Develops a Database for Flavonoids to Assess Dietary Intakes. Procedia Food Sci 2013;2:81-86. DOI:10.1016/j.profoo.2013.04.013
  • Iwashina T. The structure and distribution of the flavonoids in plants. J Plant Res 2000;113(3):287-299. DOI:10.1007/PL00013940
  • Moon J, Do H-J, Kim OY, Shin M-J. Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 2013;58:347-354. DOI: 10.1016/j.fct.2013.05.006
  • Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem 2017;42:62-71. DOI: 10.1016/j.jnutbio.2016.12.018
  • Yuan X, Wei G, You Y, Huang Y, Lee HJ, Dong M, Lin J, Hu T, Zhang C, Zhou H. Rutin ameliorates obesity through brown fat activation. FASEB J 2017;31(1):333-345. DOI: 10.1096/fj.201600459RR
  • Hu T, Yuan X, Wei G, Luo H, Lee HJ, Jin W. Myricetin-induced brown adipose tissue activation prevents obesity and insulin resistance in db/db mice. Eur J Nutr 2018;57(1):391- 403. DOI: 10.1007/s00394-017-1433-z
  • Varshney R, Mishra R, Das N, Sircar D, Roy P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: An in vitro and in vivo study. J Funct Foods 2019;59:194-205. DOI:10.1016/j.jff.2019.05.004
  • Dong J, Zhang X, Zhang L, Bian H-X, Xu N, Bao B, Liu J. Quercetin reduces obesity- associated adipose tissue macrophage infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 2014. DOI: 10.1194/jlr.M038786
  • Hu T, Yuan X, Ye R, Zhou H, Lin J, Zhang C, Zhang H, Wei G, Dong M, Huang Y, Lim W. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat. J Nutr Biochem 2017;47:21-28. DOI: 10.1016/j.jnutbio.2017.04.012
  • Klimczak I, Małecka M, Szlachta M, Gliszczyńska-Świgło A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J Food Compost Anal 2007;20(3):313-322. DOI:10.1016/j.jfca.2006.02.012
  • Brett GM, Hollands W, Needs PW, Teucher B, R. Dainty J, Davis BD, Brodbelt JS, Kroon PA. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br J Nutr 2008;101(5):664-675. DOI: 10.1017/S000711450803081X
  • Choi J, Kim K-J, Koh E-J, Lee B-Y. Altered Gelidium elegans Extract-stimulated Beige-like Phenotype Attenuates Adipogenesis in 3T3-L1 Cells. J Food Nutr Res 2016;4(7):448-453. DOI: 10.12691/jfnr-4-7-6
  • Shen J, Nakamura H, Fujisaki Y, Tanida M, Horii Y, Fuyuki R, Takumi h, Shiraishi K, Kometani T, Nagai K. Effect of 4G-α- glucopyranosyl hesperidin on brown fat adipose tissue- and cutaneous-sympathetic nerve activity and peripheral body temperature. Neurosci Lett 2009;461(1):30-35. DOI: 10.1016/j.neulet.2009.05.067
  • Choi J, Kim K-J, Koh E-J, Lee B-Y. Gelidium elegans Regulates the AMPK-PRDM16- UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet. Nutrients 2017;9(4):342. DOI: 10.3390/nu9040342
  • Aron PM, Kennedy JA. Flavan‐3‐ols: Nature, occurrence and biological activity. Mol Nutr Food Res 2008;52(1):79-104. DOI: 10.1002/mnfr.200700137
  • Chun OK, Chung SJ, Song WO. Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults. J Nutr 2007;137(5):1244-1252. DOI: 10.1093/jn/137.5.1244
  • Song WO, Chun OK. Tea Is the Major Source of Flavan-3-ol and Flavonol in the U.S. Diet. J Nutr 2008;138(8):1543S-1547S. DOI: 10.1093/jn/138.8.1543S
  • Scalbert A, Williamson G. Dietary Intake and Bioavailability of Polyphenols. J Nutr 2000;130(8):2073S-2085S. DOI: 10.1093/jn/130.8.2073S
  • Tsao R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010;2(12):1231. DOI: 10.3390/nu2121231
  • Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: Interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes 2000;24:252. DOI: 10.1038/sj.ijo.0801101
  • Choo JJ. Green tea reduces body fat accretion caused by high-fat diet in rats through β- adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem 2003;14(11):671-676. DOI: 10.1016/j.jnutbio.2003.08.005
  • Nomura S, Ichinose T, Jinde M, Kawashima Y, Tachiyashiki K, Imaizumi K. Tea catechins enhance the mRNA expression of uncoupling protein 1 in rat brown adipose tissue. J Nutr Biochem 2008;19(12):840-847. DOI: 10.1016/j.jnutbio.2007.11.005
  • Gosselin C, Haman F. Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men. Br J Nutr 2012;110(2):282-288. DOI: 10.1017/S0007114512005089
  • Yan J, Zhao Y, Zhao B. Green tea catechins prevent obesity through modulation of peroxisome proliferator-activated receptors. Sci China Life Sci 2013;56(9):804-810. DOI: 10.1007/s11427-013-4512-2
  • Matsumura Y, Nakagawa Y, Mikome K, Yamamoto H, Osakabe N. Enhancement of energy expenditure following a single oral dose of Flavan-3-Ols associated with an increase in Catecholamine secretion. PLoS One 2014;9(11):e112180. DOI: 10.1371/journal.pone.0112180
  • Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Oolong, black and pu- erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct 2014;5(10):2420-2429. DOI:10.1039/C4FO00095A
  • Nirengi S, Amagasa S, Homma T, Yoneshiro T, Matsumiya S, Kurosawa Y, Sakane N, Ebi K, Saito M, Hamaoka T. Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. SpringerPlus 2016;5(1):1363. DOI: 10.1186/s40064-016-3029-0
  • Rabadan-Chávez G, Quevedo-Corona L, Garcia AM, Reyes-Maldonado E, Jaramillo- Flores ME. Cocoa powder, cocoa extract and epicatechin attenuate hypercaloric diet-induced obesity through enhanced β-oxidation and energy expenditure in white adipose tissue. J Funct Foods 2016;20:54-67. DOI:10.1016/j.jff.2015.10.016
  • Gutiérrez-Salmeán G, Ortiz-Vilchis P, Vacaseydel CM, Garduño-Siciliano L, Chamorro-Cevallos G, Meaney E, Villafana S, Villarreal F, Ceballos G, Ramirez-Sanchez I. Effects of (−)-epicatechin on a diet-induced rat model of cardiometabolic risk factors. Eur J Pharmacol 2014;728:24-30. DOI: 10.1016/j.ejphar.2014.01.053
  • Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 2017;61(1):1361779. DOI: 10.1080/16546628.2017.1361779
  • Zhang Z, Kou X, Fugal K, McLaughlin J. Comparison of HPLC Methods for Determination of Anthocyanins and Anthocyanidins in Bilberry Extracts. J Agric Food Chem 2004;52(4):688-691. DOI: 10.1021/jf034596w
  • You Y, Yuan X, Lee HJ, Huang W, Jin W, Zhan J. Mulberry and mulberry wine extract increase the number of mitochondria during brown adipogenesis. Food Funct 2015;6(2):401-408. DOI: 10.1039/c4fo00719k
  • Matsukawa T, Villareal MO, Motojima H, Isoda H. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. J Nutr Biochem 2017;40:77-85. DOI: 10.1016/j.jnutbio.2016.09.018
  • Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-Activated Protein Kinase in diabetic mice. J Nutr 2010;140(3):527-533. DOI: 10.3945/jn.109.118216
  • You Y, Yuan X, Liu X, Liang C, Meng M, Huang Y, Han X, Guo J, Guo Y, Ren C, Zhang Q. Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function. Mol Nutr Food Res 2017;61(11). DOI: 10.1002/mnfr.201700261
  • Murphy PA, Song T, Buseman G, Barua K, Beecher GR, Trainer D, Holden J. Isoflavones in Retail and Institutional Soy Foods. J Agric Food Chem 1999;47(7):2697-2704. DOI: 10.1021/jf9811440
  • Aziz SA, Wakeling LA, Miwa S, Alberdi G, Hesketh JE, Ford D. Metabolic programming of a beige adipocyte phenotype by genistein. Mol Nutr Food Res 2017;61(2):1600574. DOI: 10.1002/mnfr.201600574
  • Gautam J, Khedgikar V, Kushwaha P, Choudhary D, Nagar GK, Dev K, Dixit P, Singh D, Maurya R, Trivedi R. Formononetin, an isoflavone, activates AMP-activated protein kinase/beta-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss. Br J Nutr 2017;117(5):645-661. DOI: 10.1017/S0007114517000149
  • Lephart ED, Porter JP, Lund TD, Bu L, Setchell KD, Ramoz G, Crowley WR. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats. Nutr Metab (Lond) 2004;1(1):16. DOI: 10.1186/1743-7075-1-16
  • Crespillo A, Alonso M, Vida M, Pavón F, Serrano A, Rivera P, Romero-Zerbo Y, Fernandez-Llebrez P, Martinez A, Perez-Valero V, Bermudez-Silva FJ. Reduction of body weight, liver steatosis and expression of stearoyl-CoA desaturase 1 by the isoflavone daidzein in diet-induced obesity. Br J Pharmacol 2011;164(7):1899-1915. DOI: 0.1111/j.1476-5381.2011.01477.x
  • Kamiya T, Nagamine R, Sameshima-Kamiya M, Tsubata M, Ikeguchi M, Takagaki K. The isoflavone-rich fraction of the crude extract of the Puerariae flower increases oxygen consumption and BAT UCP1 expression in high-fat diet-fed mice. Glob J Health Sci 2012;4(5):147-155. DOI: 10.5539/gjhs.v4n5p147
  • Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005;45(4):287-306. DOI: 10.1080/1040869059096
  • Law J, Morris DE, Izzi-Engbeaya C, Salem V, Coello C, Robinson L, Jayasinghe M, Scott R, Gunn R, Rabiner E, Tan T. Thermal imaging is a noninvasive alternative to PET/CT for measurement of brown adipose tissue activity in humans. J Nucl Med 2018;59(3):516-522. DOI: 10.2967/jnumed.117.190546
  • Tapas AR, Sakarkar D, Kakde R. Flavonoids as nutraceuticals: A review. Trop J Pharm Res 2008;7:1089-1099. DOI:10.4314/tjpr.v7i3.14693
There are 95 citations in total.

Details

Primary Language English
Subjects Nutritional Science
Journal Section Review
Authors

Hazal Küçükkaraca Zakkour 0000-0002-3950-9280

Hilal Yıldıran 0000-0001-7956-5087

Early Pub Date March 23, 2024
Publication Date March 28, 2024
Submission Date March 3, 2022
Published in Issue Year 2024

Cite

APA Küçükkaraca Zakkour, H., & Yıldıran, H. (2024). Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue. Clinical and Experimental Health Sciences, 14(1), 253-263. https://doi.org/10.33808/clinexphealthsci.1082047
AMA Küçükkaraca Zakkour H, Yıldıran H. Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue. Clinical and Experimental Health Sciences. March 2024;14(1):253-263. doi:10.33808/clinexphealthsci.1082047
Chicago Küçükkaraca Zakkour, Hazal, and Hilal Yıldıran. “Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue”. Clinical and Experimental Health Sciences 14, no. 1 (March 2024): 253-63. https://doi.org/10.33808/clinexphealthsci.1082047.
EndNote Küçükkaraca Zakkour H, Yıldıran H (March 1, 2024) Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue. Clinical and Experimental Health Sciences 14 1 253–263.
IEEE H. Küçükkaraca Zakkour and H. Yıldıran, “Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue”, Clinical and Experimental Health Sciences, vol. 14, no. 1, pp. 253–263, 2024, doi: 10.33808/clinexphealthsci.1082047.
ISNAD Küçükkaraca Zakkour, Hazal - Yıldıran, Hilal. “Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue”. Clinical and Experimental Health Sciences 14/1 (March 2024), 253-263. https://doi.org/10.33808/clinexphealthsci.1082047.
JAMA Küçükkaraca Zakkour H, Yıldıran H. Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue. Clinical and Experimental Health Sciences. 2024;14:253–263.
MLA Küçükkaraca Zakkour, Hazal and Hilal Yıldıran. “Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue”. Clinical and Experimental Health Sciences, vol. 14, no. 1, 2024, pp. 253-6, doi:10.33808/clinexphealthsci.1082047.
Vancouver Küçükkaraca Zakkour H, Yıldıran H. Possible Anti-Obesity Role of Flavonoids Through Brown Adipose Tissue. Clinical and Experimental Health Sciences. 2024;14(1):253-6.

14639   14640