Research Article
BibTex RIS Cite

Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation

Year 2024, , 446 - 453, 28.06.2024
https://doi.org/10.33808/clinexphealthsci.1330362

Abstract

Objective: The aim of this study was to evaluate the microstructure of the mandible by micro computed tomography (µCT), cone beam computed tomography (CBCT) and computed tomography (CT) and to estimate the compressive strength of the bone based on the values obtained by these methods.
Methods: Thirty specimens obtained from ex-vivo sheep mandible were scanned by µCT cone beam computed tomography and computed tomography. These specimens were also subjected to compression testing and compression strength values were calculated. Morphometric parameters were evaluated using ImageJ software Bland-Altman lower upper bound agreement and ICC coefficient were used to evaluate the agreement between the tomography methods used and the gold standard. Linear and multivariate stepwise regression analysis was performed to calculate the compression strength value based on the radiomorphometric parameters. Statistical significance level was accepted as .05.
Results: Bone Surface/Total Volume, Bone Volume/Total Volume and Degree of Anistoropy parameters evaluated by CBCT and Fractal Dimension parameter evaluated by CT showed a statistically significant agreement with the gold standard method µCT. Bone Volume/Total Volume and Degree of Anistoropy parameters obtained with µCT (R2:0.75), Bone Volume/Total Volume, Degree of Anistoropy , Connectivity Density parameters (R2:0.62), and the Structure Model Index parameter (R2:0.13) obtained by CT can be used to predict the compression strength value.
Conclusion: Bone compression strength can be estimated by CBCT and µCT methods in a desired level. Bone Volume/Total Volume and Degree of Anistoropy parameters are significant determinants of bone mechanical property in not only µCT but also CBCT method.

References

  • Antoun JS, Mei L, Gibbs K, Farella M. Effect of orthodontic treatment on the periodontal tissues. Periodontol 2000. 2017;74(1):140-157. DOI: 10.1111/prd.12194.
  • Cakur B, Şahin A, Dagistan S, Altun O, Caglayan F, Miloglu Ö, Harorli A. Dental panoramic radiography in the diagnosis of osteoporosis. J Int Med Res .2008;36(4):792-799. DOI:10.1177/147323000803600 422.
  • Ibrahim N, Parsa A, Hassan B, Van der Stelt P, Wismeijer D. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review. Dentomaxillofac Radiol. 2013;42(3):20120075. DOI:10.1259/dmfr.2012 0075.
  • Ciarallo A, Barralet J, Tanzer M, Kremer R. An approach to compare the quality of cancellous bone from the femoral necks of healthy and osteoporotic patients through compression testing and microcomputed tomography imaging. McGill J Med: MJM. 2006;9(2):102. DOI: 10.26443/mjm.v9i2.665.
  • Hildebrand TOR, Rüegsegger P. Quantification of bone microarchitecture with the structure model index. Computer Methods in Biomechanics and Bio Medical Engineering. 1997;1(1):15-23. DOI:10.1080/01495739708936692.
  • Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M. The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3-11. DOI:10.1002/jbmr. 5650040103.
  • Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 1996;58(1):24-29. DOI:10.1007/BF02509542.
  • Frederiksen NL, Benson BW, Sokolowski TW. Effective dose and risk assessment from computed tomography of the maxillofacial complex. Dentomaxillofac Radiol. 1995;24(1):55-58. DOI:10.1259/dmfr.24.1.8.5 93910.
  • Cohnen M, Kemper J, Möbes O, Pawelzik J, Mödder U. Radiation dose in dental radiology. Eur Radiol. 2002;12(3):634-637. DOI:10.1007/s00330010092.
  • Kulah K, Gulsahi A, Kamburoğlu K, Geneci F, Ocak M, Celik HH, Ozen T. Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127(3):247-256. DOI:10.1016/j.oooo.2018.11.014.
  • Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone‐beam CT datasets. Clin Oral Implants Res. 2014;25(8):941-945. DOI:10.1111/clr.12163.
  • Panmekiate S, Pauwels R, Ngonphloy N, Charoenkarn T, Faruangsaeng T. Comparison of mandibular bone micro-architecture between micro-CT and cone-beam CT images. Dentomaxillofac Radiol. 2015; 44(5): 20140322. DOI:10.1259/dmfr.20140 322.
  • Corpas LS, Jacobs R, Quirynen M, Huang Y, Naert I. Duyck J. Peri-implant bone tis-sue assessment by comparing the outcome of intra-oral radiograph and cone beam computed tomography analyses to the histological standard. Clin Oral Implants Res. 2011;22: 492–499. DOI:10.1111/j.1600-0501.2010.02029.x
  • González‐García R, Monje F. Is micro‐computed tomography reliable to determine the microstructure of the maxillary alveolar bone? Clin Oral Implants Res. 2013;24(7):730-737. DOI: 10.1111/j.1600-0501.2012.02478.x.
  • Minkin C. Marinho VC. Role of the osteoclast at the bone-implant interface.Adv Dent Res. 1999;13:49–56. DOI: 10.1177/08959374990130011401.
  • Manske SL, Macdonald HM, Nishiyama KK, Boyd SK. McKay HA. Clinical tools to evaluate bone strength. Clin Rev Bone Miner Metab. 2010;8:122–134. DOI: 10.1007/s12018-009-9066-2.
  • Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone. 2019;120:187-193. DOI:10.1016/j.bone.2018.10.024.
  • Luo Y, Amromanoh O. Bone organic-inorganic phase ratio is a fundamental determinant of bone material quality. Applied Bionics and Biomechanics. 2021. Article ID 4928396 DOI:10.1155/2021/4928396.
  • Nyman JS, Uppuganti S, Unal M, Leverant CJ, Adabala S, Granke M, Voziyan P, Does MD. Manipulating the amount and structure of the organic matrix affects the water compartments of human cortical bone. JBMR Pplus. 2019;3(6):10135. DOI: 10.1002/jbm4.10135.
  • Ozasa R, Matsugaki A, Ishimoto T, Kamura S, Yoshida H, Magi M, Matsumoto Y, Sakuraba K, Fujimura K, Miyahara H, Nakano T. Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone. 2022;155:116261. DOI.10.1016/j.bone.2021.116261.
  • Sigmund EE, Cho H, Song YQ. High‐resolution MRI of internal field diffusion‐weighting in trabecular bone. NMR Biomed. 2009; 22(4):436-448. DOI:10.1002/nbm.1354.
  • Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology. 2015;276(2):526-535. DOI: 10.1148/radiol.15141850.
  • Carbonare LD, Giannini S. Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest. 2004;27(1):99-105.DOI: 10.1007/BF03350919.
  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27(4):375-389. DOI:10.1016/0021-9290(94)90014-0.
  • Ding M, Odgaard A, Hvid I, Hvid I. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br. 2003;85(6):906-912. DOI:10.1302/0301-620X.85B6.125 95
  • Kang SR, Bok SC, Choi SC, Lee SS, Heo MS, Huh KH, Kim TI, Yi WJ. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. J Periodontal Implant Sci. 2016;46(2):116-127. DOI:10.5051/jpis.2016.46.2.116.
  • Maquer G, Musy SN, Wandel J, Gross T, Zysset PK. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J Bone Miner Res. 2015;30(6):1000-1008. DOI: 10.1002/jbmr.2437.
  • Musy SN, Maquer G, Panyasantisuk J, Wandel J, Zysset PK. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor. J Mech Behav Biomed Mater. 2017;65:808-813. DOI:10.1016/j.jmbbm.2016.10.004.
  • Han X, Cui J, Chu L, Zhang W, Xie K, Jiang X, ... & Yu Z. Abnormal subchondral trabecular bone remodeling in knee osteoarthritis under the influence of knee alignment. Osteoarthr Cartil. 2002;30(1):100-109. DOI:1016/j.joca. 2021. 10.005.
  • Kim DH, Kim SC, Yoon JS, Lee YS. Are there harmful effects of preoperative mild lateral or patellofemoral degeneration on the outcomes of open wedge high tibial osteotomy for medial compartmental osteoarthritis? Orthop J Sports Med. 2020;8(6): 232596712092748 DOI:10.1177/2325967120927481.
  • Kim JE, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(6):762-770. DOI:10.1016/j.oooo.2015.08.022.
  • Teo JCM, Si-Hoe KM, Keh JEL, Teoh SH. Correlation of cancellous bone microarchitectural parameters from micro-CT to CT number and bone mechanical properties. Mater Sci Eng C. 2007; 27(2):333-339. DOI:10.1016/j.msec.2006.05.003.
  • Ding M, Overgaard S. Degenerations in global morphometry of cancellous bone in rheumatoid arthritis, osteoarthritis and osteoporosis of femoral heads are similar but more severe than in ageing controls. Calcif Tissue Int. 2022;110(1):57-64. DOI:10.1007/s00223-021-00889-2.
  • Müller R, Rüegsegger P. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Bone Res Biomech. 1997;61-79. DOI:10.3233/978-1-60750-884-7-61.
  • Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol. 2015; 44(8):20150078. DOI:10.1259/dmfr.20150 078.
  • Diederichs G, Link TM, Kentenich M, Schwieger K, Huber MB, Burghardt AJ, Majumdar S , Rogalla P, Issever AS. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing. Bone. 2009;44(5):976-983. DOI:10.1016/j.bone.2009.01.372.
  • Parsa A, Ibrahim N, Hassan B, van der Stelt, P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro‐CT, and cone beam CT. Clin Oral Implants Res. 2015; 26(1):1-7. DOI:10.1111/clr.12315.
Year 2024, , 446 - 453, 28.06.2024
https://doi.org/10.33808/clinexphealthsci.1330362

Abstract

References

  • Antoun JS, Mei L, Gibbs K, Farella M. Effect of orthodontic treatment on the periodontal tissues. Periodontol 2000. 2017;74(1):140-157. DOI: 10.1111/prd.12194.
  • Cakur B, Şahin A, Dagistan S, Altun O, Caglayan F, Miloglu Ö, Harorli A. Dental panoramic radiography in the diagnosis of osteoporosis. J Int Med Res .2008;36(4):792-799. DOI:10.1177/147323000803600 422.
  • Ibrahim N, Parsa A, Hassan B, Van der Stelt P, Wismeijer D. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review. Dentomaxillofac Radiol. 2013;42(3):20120075. DOI:10.1259/dmfr.2012 0075.
  • Ciarallo A, Barralet J, Tanzer M, Kremer R. An approach to compare the quality of cancellous bone from the femoral necks of healthy and osteoporotic patients through compression testing and microcomputed tomography imaging. McGill J Med: MJM. 2006;9(2):102. DOI: 10.26443/mjm.v9i2.665.
  • Hildebrand TOR, Rüegsegger P. Quantification of bone microarchitecture with the structure model index. Computer Methods in Biomechanics and Bio Medical Engineering. 1997;1(1):15-23. DOI:10.1080/01495739708936692.
  • Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M. The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3-11. DOI:10.1002/jbmr. 5650040103.
  • Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 1996;58(1):24-29. DOI:10.1007/BF02509542.
  • Frederiksen NL, Benson BW, Sokolowski TW. Effective dose and risk assessment from computed tomography of the maxillofacial complex. Dentomaxillofac Radiol. 1995;24(1):55-58. DOI:10.1259/dmfr.24.1.8.5 93910.
  • Cohnen M, Kemper J, Möbes O, Pawelzik J, Mödder U. Radiation dose in dental radiology. Eur Radiol. 2002;12(3):634-637. DOI:10.1007/s00330010092.
  • Kulah K, Gulsahi A, Kamburoğlu K, Geneci F, Ocak M, Celik HH, Ozen T. Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127(3):247-256. DOI:10.1016/j.oooo.2018.11.014.
  • Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone‐beam CT datasets. Clin Oral Implants Res. 2014;25(8):941-945. DOI:10.1111/clr.12163.
  • Panmekiate S, Pauwels R, Ngonphloy N, Charoenkarn T, Faruangsaeng T. Comparison of mandibular bone micro-architecture between micro-CT and cone-beam CT images. Dentomaxillofac Radiol. 2015; 44(5): 20140322. DOI:10.1259/dmfr.20140 322.
  • Corpas LS, Jacobs R, Quirynen M, Huang Y, Naert I. Duyck J. Peri-implant bone tis-sue assessment by comparing the outcome of intra-oral radiograph and cone beam computed tomography analyses to the histological standard. Clin Oral Implants Res. 2011;22: 492–499. DOI:10.1111/j.1600-0501.2010.02029.x
  • González‐García R, Monje F. Is micro‐computed tomography reliable to determine the microstructure of the maxillary alveolar bone? Clin Oral Implants Res. 2013;24(7):730-737. DOI: 10.1111/j.1600-0501.2012.02478.x.
  • Minkin C. Marinho VC. Role of the osteoclast at the bone-implant interface.Adv Dent Res. 1999;13:49–56. DOI: 10.1177/08959374990130011401.
  • Manske SL, Macdonald HM, Nishiyama KK, Boyd SK. McKay HA. Clinical tools to evaluate bone strength. Clin Rev Bone Miner Metab. 2010;8:122–134. DOI: 10.1007/s12018-009-9066-2.
  • Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone. 2019;120:187-193. DOI:10.1016/j.bone.2018.10.024.
  • Luo Y, Amromanoh O. Bone organic-inorganic phase ratio is a fundamental determinant of bone material quality. Applied Bionics and Biomechanics. 2021. Article ID 4928396 DOI:10.1155/2021/4928396.
  • Nyman JS, Uppuganti S, Unal M, Leverant CJ, Adabala S, Granke M, Voziyan P, Does MD. Manipulating the amount and structure of the organic matrix affects the water compartments of human cortical bone. JBMR Pplus. 2019;3(6):10135. DOI: 10.1002/jbm4.10135.
  • Ozasa R, Matsugaki A, Ishimoto T, Kamura S, Yoshida H, Magi M, Matsumoto Y, Sakuraba K, Fujimura K, Miyahara H, Nakano T. Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone. 2022;155:116261. DOI.10.1016/j.bone.2021.116261.
  • Sigmund EE, Cho H, Song YQ. High‐resolution MRI of internal field diffusion‐weighting in trabecular bone. NMR Biomed. 2009; 22(4):436-448. DOI:10.1002/nbm.1354.
  • Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology. 2015;276(2):526-535. DOI: 10.1148/radiol.15141850.
  • Carbonare LD, Giannini S. Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest. 2004;27(1):99-105.DOI: 10.1007/BF03350919.
  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27(4):375-389. DOI:10.1016/0021-9290(94)90014-0.
  • Ding M, Odgaard A, Hvid I, Hvid I. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br. 2003;85(6):906-912. DOI:10.1302/0301-620X.85B6.125 95
  • Kang SR, Bok SC, Choi SC, Lee SS, Heo MS, Huh KH, Kim TI, Yi WJ. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. J Periodontal Implant Sci. 2016;46(2):116-127. DOI:10.5051/jpis.2016.46.2.116.
  • Maquer G, Musy SN, Wandel J, Gross T, Zysset PK. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J Bone Miner Res. 2015;30(6):1000-1008. DOI: 10.1002/jbmr.2437.
  • Musy SN, Maquer G, Panyasantisuk J, Wandel J, Zysset PK. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor. J Mech Behav Biomed Mater. 2017;65:808-813. DOI:10.1016/j.jmbbm.2016.10.004.
  • Han X, Cui J, Chu L, Zhang W, Xie K, Jiang X, ... & Yu Z. Abnormal subchondral trabecular bone remodeling in knee osteoarthritis under the influence of knee alignment. Osteoarthr Cartil. 2002;30(1):100-109. DOI:1016/j.joca. 2021. 10.005.
  • Kim DH, Kim SC, Yoon JS, Lee YS. Are there harmful effects of preoperative mild lateral or patellofemoral degeneration on the outcomes of open wedge high tibial osteotomy for medial compartmental osteoarthritis? Orthop J Sports Med. 2020;8(6): 232596712092748 DOI:10.1177/2325967120927481.
  • Kim JE, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(6):762-770. DOI:10.1016/j.oooo.2015.08.022.
  • Teo JCM, Si-Hoe KM, Keh JEL, Teoh SH. Correlation of cancellous bone microarchitectural parameters from micro-CT to CT number and bone mechanical properties. Mater Sci Eng C. 2007; 27(2):333-339. DOI:10.1016/j.msec.2006.05.003.
  • Ding M, Overgaard S. Degenerations in global morphometry of cancellous bone in rheumatoid arthritis, osteoarthritis and osteoporosis of femoral heads are similar but more severe than in ageing controls. Calcif Tissue Int. 2022;110(1):57-64. DOI:10.1007/s00223-021-00889-2.
  • Müller R, Rüegsegger P. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Bone Res Biomech. 1997;61-79. DOI:10.3233/978-1-60750-884-7-61.
  • Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol. 2015; 44(8):20150078. DOI:10.1259/dmfr.20150 078.
  • Diederichs G, Link TM, Kentenich M, Schwieger K, Huber MB, Burghardt AJ, Majumdar S , Rogalla P, Issever AS. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing. Bone. 2009;44(5):976-983. DOI:10.1016/j.bone.2009.01.372.
  • Parsa A, Ibrahim N, Hassan B, van der Stelt, P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro‐CT, and cone beam CT. Clin Oral Implants Res. 2015; 26(1):1-7. DOI:10.1111/clr.12315.
There are 37 citations in total.

Details

Primary Language English
Subjects Oral and Maxillofacial Radiology
Journal Section Articles
Authors

Sema Kaya 0000-0002-6306-3901

Alaettin Koç 0000-0001-9984-6900

Publication Date June 28, 2024
Submission Date July 20, 2023
Published in Issue Year 2024

Cite

APA Kaya, S., & Koç, A. (2024). Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation. Clinical and Experimental Health Sciences, 14(2), 446-453. https://doi.org/10.33808/clinexphealthsci.1330362
AMA Kaya S, Koç A. Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation. Clinical and Experimental Health Sciences. June 2024;14(2):446-453. doi:10.33808/clinexphealthsci.1330362
Chicago Kaya, Sema, and Alaettin Koç. “Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation”. Clinical and Experimental Health Sciences 14, no. 2 (June 2024): 446-53. https://doi.org/10.33808/clinexphealthsci.1330362.
EndNote Kaya S, Koç A (June 1, 2024) Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation. Clinical and Experimental Health Sciences 14 2 446–453.
IEEE S. Kaya and A. Koç, “Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation”, Clinical and Experimental Health Sciences, vol. 14, no. 2, pp. 446–453, 2024, doi: 10.33808/clinexphealthsci.1330362.
ISNAD Kaya, Sema - Koç, Alaettin. “Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation”. Clinical and Experimental Health Sciences 14/2 (June 2024), 446-453. https://doi.org/10.33808/clinexphealthsci.1330362.
JAMA Kaya S, Koç A. Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation. Clinical and Experimental Health Sciences. 2024;14:446–453.
MLA Kaya, Sema and Alaettin Koç. “Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation”. Clinical and Experimental Health Sciences, vol. 14, no. 2, 2024, pp. 446-53, doi:10.33808/clinexphealthsci.1330362.
Vancouver Kaya S, Koç A. Evaluation of Bone Microstructure Parameters by Using Tomographic Methods and Compressive Strength Estimation. Clinical and Experimental Health Sciences. 2024;14(2):446-53.

14639   14640