Research Article
BibTex RIS Cite

The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats

Year 2022, Volume: 12 Issue: 1, 134 - 140, 30.03.2022
https://doi.org/10.33808/clinexphealthsci.864015

Abstract

Objectives: In this study, we investigated the possible useful effectiveness of Sinapic acid on rat kidney and lung tissues in an experimental cecal ligation puncture (CLP) model.
Methods: CLP model was created for the rats in the CLP group. 20 mg/kg of Sinapic acid was given in the CLP-Sinapic acid group. At the end of the experiment, lung and kidney tissues were collected and biochemical analyzes were evaluated.
Results: For the lung and kidney tissue samples; antioxidant levels decreased, and oxidant levels increased in the CLP group. When the immunohistochemical parameters were evaluated, IL-1β, caspase-3, and TNF-α immunopositivity were severe levels in CLP group. But immunopositivity of these parameters have been observed as attenuated in CLP-Sinapic acid group compared to CLP group.
Conclusion: The results of our study showed that Sinapic acid has useful effectiveness on the sepsis model caused by CLP in the lung and kidney tissues.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1992;101(6):1644-55.
  • 2. Newland A, Provan D, Myint S. Preventing severe infection after splenectomy. BMJ. 2005;331(7514):417-8.
  • 3. Liu MW, Su MX, Wang YH, Wei W, Qin LF, Liu X, et al. Effect of melilotus extract on lung injury by upregulating the expression of cannabinoid CB2 receptors in septic rats. BMC Complement Altern Med. 2014;14:94.
  • 4. Ritter C, Andrades M, Frota Junior ML, Bonatto F, Pinho RA, Polydoro M, et al. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med. 2003;29(10):1782-9.
  • 5. Bone RC. Gram-Negative Sepsis - Background, Clinical-Features, and Intervention. Chest. 1991;100(3):802-8.
  • 6. Otero-Anton E, Gonzalez-Quintela A, Lopez-Soto A, Lopez-Ben S, Llovo J, Perez LF. Cecal ligation and puncture as a model of sepsis in the rat: Influence of the puncture size on mortality, bacteremia, endotoxemia and tumor necrosis factor alpha levels. Eur Surg Res. 2001;33(2):77-9.
  • 7. Gulcin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006;78(8):803-11.
  • 8. Gulcin I. Antioxidant properties of resveratrol: A structure-activity insight. Innov Food Sci Emerg. 2010;11(1):210-8.
  • 9. Abd El-Latif AA, Sayed AA, Soliman AM, Fahmy SR. Exploration of the therapeutic potential effect of Sepia officinalis in animal model of sepsis induced by cecal ligation and puncture. Injury. 2016;47(12):2709-17.
  • 10. Gulcin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology. 2006;217(2-3):213-20.
  • 11. Hoste E, Bagshaw S, Bellomo R, Cely C, Colman R, Cruz D, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intens Care Med. 2015;41(8):1411-23.
  • 12. Zhai Y, Zhou X, Dai Q, Fan Y, Huang X. Hydrogen-rich saline ameliorates lung injury associated with cecal ligation and puncture-induced sepsis in rats. Exp Mol Pathol. 2015;98(2):268-76.
  • 13. Gulcin I. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012;86(3):345-91.
  • 14. Gulcin I. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651-715.
  • 15. Ansari MA. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother. 2017;93:646-53.
  • 16. Ansari MA, Raish M, Ahmad A, Ahmad SF, Mudassar S, Mohsin K, et al. Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sci. 2016;165:1-8.
  • 17. Roy SJ, Stanely Mainzen Prince P. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Food Chem Toxicol. 2012;50(11):3984-9.
  • 18. Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, et al. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. J Agric Food Chem. 2008;56(21):10265-72.
  • 19. Silambarasan T, Manivannan J, Priya MK, Suganya N, Chatterjee S, Raja B. Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem Bioph Res Co. 2015;456(4):853-9.
  • 20. Ohkawa H, Ohishi N, Yagi K. Assay for Lipid Peroxides in Animal-Tissues by Thiobarbituric Acid Reaction. Anal Biochem. 1979;95(2):351-8.
  • 21. Sun Y, Oberley LW, Li Y. A Simple Method for Clinical Assay of Superoxide-Dismutase. Clin Chem. 1988;34(3):497-500.
  • 22. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78(3):206-9.
  • 23. Topdağı Ö, Tanyeli A, Ekinci Akdemir FN, Eraslan E, Güler MC. Barbaloin Attenuates Oxidative Testicular Injury Induced by Ischemia Reperfusion via Antioxidant Effects. Turkish Journal of Science. 2020;5(1):28-33.
  • 24. Topdağı Ö, Tanyeli A, Ekinci Akdemir FN, Güzel Erdoğan D, Güler MC, Eraslan E. The Effects of Higenamine on Testicular Damage Injured by Ischemia Reperfusion: A Biochemical Study. Turkish Journal of Science. 2019;4(2):92-9.
  • 25. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303-10.
  • 26. Vincent JL, Abraham E. The last 100 years of sepsis. Am J Respir Crit Care Med. 2006;173(3):256-63. 27. Almog Y. Statins, inflammation, and sepsis: hypothesis. Chest. 2003;124(2):740-3.
  • 28. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885-91.
  • 29. Gao F, Linhartova L, Johnston AM, Thickett DR. Statins and sepsis. Br J Anaesth. 2008;100(3):288-98.
  • 30. Goode HF, Webster NR. Free-Radicals and Antioxidants in Sepsis. Crit Care Med. 1993;21(11):1770-6.
  • 31. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med. 2006;48(1):28-54.
  • 32. Babayigit H, Kucuk C, Sozuer E, Yazici C, Kose K, Akgun H. Protective effect of beta-glucan on lung injury after cecal ligation and puncture in rats. Intensive Care Med. 2005;31(6):865-70.
  • 33. Lee HT, Xu H, Siegel CD, Krichevsky IE. Local anesthetics induce human renal cell apoptosis. Am J Nephrol. 2003;23(3):129-39.
  • 34. Bursal E, Gulcin I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int. 2011;44(5):1482-9.
  • 35. Gulcin I. Antioxidant Activity of Eugenol: A Structure-Activity Relationship Study. J Med Food. 2011;14(9):975-85.
  • 36. Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174(1):27-37.
  • 37. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1-85.
  • 38. Kacmaz A, Polat A, User Y, Tilki M, Ozkan S, Sener G. Octreotide improves reperfusion-induced oxidative injury in acute abdominal hypertension in rats. J Gastrointest Surg. 2004;8(1):113-9.
  • 39. Aksoy AN, Toker A, Celik M, Aksoy M, Halici Z, Aksoy H. The effect of progesterone on systemic inflammation and oxidative stress in the rat model of sepsis. Indian J Pharmacol. 2014;46(6):622-6.
  • 40. Taner G, Aydin S, Bacanli M, Sarigol Z, Sahin T, Basaran AA, et al. Modulating effects of pycnogenol(R) on oxidative stress and DNA damage induced by sepsis in rats. Phytother Res. 2014;28(11):1692-700.
  • 41. Cohen M, Lippman M, Chabner B. Role of pineal gland in aetiology and treatment of breast cancer. Lancet. 1978;2(8094):814-6.
  • 42. Xie K, Fu W, Xing W, Li A, Chen H, Han H, et al. Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis. Shock. 2012;38(6):656-63.
  • 43. Cheng B, Zhang Y, Wang A, Dong Y, Xie Z. Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment. Mol Neurobiol. 2015;52(3):1580-9.
  • 44. Nakagawa A, Sullivan KD, Xue D. Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway. Nat Struct Mol Biol. 2014;21(12):1082-90.
  • 45. Cho SY, Choi JH. Biomarkers of sepsis. Infect Chemother. 2014;46(1):1-12.
  • 46. Qiu R, Yao W, Ji H, Yuan D, Gao X, Sha W, et al. Dexmedetomidine restores septic renal function via promoting inflammation resolution in a rat sepsis model. Life Sci. 2018;204:1-8.
  • 47. Wang B, Jiang J, Yang J, Chen J, Zhu Z, Liu J, et al. Pharmacologic studies on ET-26 hydrochloride in a rat model of lipopolysaccharide-induced sepsis. Eur J Pharm Sci. 2017;109:441-5.
  • 48. Ekinci Akdemir FN, Tanyeli A. The Antioxidant Effect of Fraxin against Acute Organ Damage in Polymicrobial Sepsis Model induced by Cecal Ligation and Puncture. Turkish Journal of Science. 2019;4:22-9.
  • 49. Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharmaceut. 2011;403(1-2):136-8.
  • 50. Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, Park DH, et al. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology. 2010;59(1-2):20-30.
  • 51. Pari L, Jalaludeen AM. Protective role of sinapic acid against arsenic - Induced toxicity in rats. Chem-Biol Interact. 2011;194(1):40-7.
Year 2022, Volume: 12 Issue: 1, 134 - 140, 30.03.2022
https://doi.org/10.33808/clinexphealthsci.864015

Abstract

Project Number

-

References

  • 1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1992;101(6):1644-55.
  • 2. Newland A, Provan D, Myint S. Preventing severe infection after splenectomy. BMJ. 2005;331(7514):417-8.
  • 3. Liu MW, Su MX, Wang YH, Wei W, Qin LF, Liu X, et al. Effect of melilotus extract on lung injury by upregulating the expression of cannabinoid CB2 receptors in septic rats. BMC Complement Altern Med. 2014;14:94.
  • 4. Ritter C, Andrades M, Frota Junior ML, Bonatto F, Pinho RA, Polydoro M, et al. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med. 2003;29(10):1782-9.
  • 5. Bone RC. Gram-Negative Sepsis - Background, Clinical-Features, and Intervention. Chest. 1991;100(3):802-8.
  • 6. Otero-Anton E, Gonzalez-Quintela A, Lopez-Soto A, Lopez-Ben S, Llovo J, Perez LF. Cecal ligation and puncture as a model of sepsis in the rat: Influence of the puncture size on mortality, bacteremia, endotoxemia and tumor necrosis factor alpha levels. Eur Surg Res. 2001;33(2):77-9.
  • 7. Gulcin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006;78(8):803-11.
  • 8. Gulcin I. Antioxidant properties of resveratrol: A structure-activity insight. Innov Food Sci Emerg. 2010;11(1):210-8.
  • 9. Abd El-Latif AA, Sayed AA, Soliman AM, Fahmy SR. Exploration of the therapeutic potential effect of Sepia officinalis in animal model of sepsis induced by cecal ligation and puncture. Injury. 2016;47(12):2709-17.
  • 10. Gulcin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology. 2006;217(2-3):213-20.
  • 11. Hoste E, Bagshaw S, Bellomo R, Cely C, Colman R, Cruz D, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intens Care Med. 2015;41(8):1411-23.
  • 12. Zhai Y, Zhou X, Dai Q, Fan Y, Huang X. Hydrogen-rich saline ameliorates lung injury associated with cecal ligation and puncture-induced sepsis in rats. Exp Mol Pathol. 2015;98(2):268-76.
  • 13. Gulcin I. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012;86(3):345-91.
  • 14. Gulcin I. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651-715.
  • 15. Ansari MA. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother. 2017;93:646-53.
  • 16. Ansari MA, Raish M, Ahmad A, Ahmad SF, Mudassar S, Mohsin K, et al. Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sci. 2016;165:1-8.
  • 17. Roy SJ, Stanely Mainzen Prince P. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Food Chem Toxicol. 2012;50(11):3984-9.
  • 18. Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, et al. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. J Agric Food Chem. 2008;56(21):10265-72.
  • 19. Silambarasan T, Manivannan J, Priya MK, Suganya N, Chatterjee S, Raja B. Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem Bioph Res Co. 2015;456(4):853-9.
  • 20. Ohkawa H, Ohishi N, Yagi K. Assay for Lipid Peroxides in Animal-Tissues by Thiobarbituric Acid Reaction. Anal Biochem. 1979;95(2):351-8.
  • 21. Sun Y, Oberley LW, Li Y. A Simple Method for Clinical Assay of Superoxide-Dismutase. Clin Chem. 1988;34(3):497-500.
  • 22. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78(3):206-9.
  • 23. Topdağı Ö, Tanyeli A, Ekinci Akdemir FN, Eraslan E, Güler MC. Barbaloin Attenuates Oxidative Testicular Injury Induced by Ischemia Reperfusion via Antioxidant Effects. Turkish Journal of Science. 2020;5(1):28-33.
  • 24. Topdağı Ö, Tanyeli A, Ekinci Akdemir FN, Güzel Erdoğan D, Güler MC, Eraslan E. The Effects of Higenamine on Testicular Damage Injured by Ischemia Reperfusion: A Biochemical Study. Turkish Journal of Science. 2019;4(2):92-9.
  • 25. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303-10.
  • 26. Vincent JL, Abraham E. The last 100 years of sepsis. Am J Respir Crit Care Med. 2006;173(3):256-63. 27. Almog Y. Statins, inflammation, and sepsis: hypothesis. Chest. 2003;124(2):740-3.
  • 28. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885-91.
  • 29. Gao F, Linhartova L, Johnston AM, Thickett DR. Statins and sepsis. Br J Anaesth. 2008;100(3):288-98.
  • 30. Goode HF, Webster NR. Free-Radicals and Antioxidants in Sepsis. Crit Care Med. 1993;21(11):1770-6.
  • 31. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med. 2006;48(1):28-54.
  • 32. Babayigit H, Kucuk C, Sozuer E, Yazici C, Kose K, Akgun H. Protective effect of beta-glucan on lung injury after cecal ligation and puncture in rats. Intensive Care Med. 2005;31(6):865-70.
  • 33. Lee HT, Xu H, Siegel CD, Krichevsky IE. Local anesthetics induce human renal cell apoptosis. Am J Nephrol. 2003;23(3):129-39.
  • 34. Bursal E, Gulcin I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int. 2011;44(5):1482-9.
  • 35. Gulcin I. Antioxidant Activity of Eugenol: A Structure-Activity Relationship Study. J Med Food. 2011;14(9):975-85.
  • 36. Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174(1):27-37.
  • 37. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1-85.
  • 38. Kacmaz A, Polat A, User Y, Tilki M, Ozkan S, Sener G. Octreotide improves reperfusion-induced oxidative injury in acute abdominal hypertension in rats. J Gastrointest Surg. 2004;8(1):113-9.
  • 39. Aksoy AN, Toker A, Celik M, Aksoy M, Halici Z, Aksoy H. The effect of progesterone on systemic inflammation and oxidative stress in the rat model of sepsis. Indian J Pharmacol. 2014;46(6):622-6.
  • 40. Taner G, Aydin S, Bacanli M, Sarigol Z, Sahin T, Basaran AA, et al. Modulating effects of pycnogenol(R) on oxidative stress and DNA damage induced by sepsis in rats. Phytother Res. 2014;28(11):1692-700.
  • 41. Cohen M, Lippman M, Chabner B. Role of pineal gland in aetiology and treatment of breast cancer. Lancet. 1978;2(8094):814-6.
  • 42. Xie K, Fu W, Xing W, Li A, Chen H, Han H, et al. Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis. Shock. 2012;38(6):656-63.
  • 43. Cheng B, Zhang Y, Wang A, Dong Y, Xie Z. Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment. Mol Neurobiol. 2015;52(3):1580-9.
  • 44. Nakagawa A, Sullivan KD, Xue D. Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway. Nat Struct Mol Biol. 2014;21(12):1082-90.
  • 45. Cho SY, Choi JH. Biomarkers of sepsis. Infect Chemother. 2014;46(1):1-12.
  • 46. Qiu R, Yao W, Ji H, Yuan D, Gao X, Sha W, et al. Dexmedetomidine restores septic renal function via promoting inflammation resolution in a rat sepsis model. Life Sci. 2018;204:1-8.
  • 47. Wang B, Jiang J, Yang J, Chen J, Zhu Z, Liu J, et al. Pharmacologic studies on ET-26 hydrochloride in a rat model of lipopolysaccharide-induced sepsis. Eur J Pharm Sci. 2017;109:441-5.
  • 48. Ekinci Akdemir FN, Tanyeli A. The Antioxidant Effect of Fraxin against Acute Organ Damage in Polymicrobial Sepsis Model induced by Cecal Ligation and Puncture. Turkish Journal of Science. 2019;4:22-9.
  • 49. Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharmaceut. 2011;403(1-2):136-8.
  • 50. Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, Park DH, et al. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology. 2010;59(1-2):20-30.
  • 51. Pari L, Jalaludeen AM. Protective role of sinapic acid against arsenic - Induced toxicity in rats. Chem-Biol Interact. 2011;194(1):40-7.
There are 50 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Ayhan Tanyeli 0000-0002-0095-0917

Fazile Nur Ekinci Akdemir 0000-0001-9585-3169

Ersen Eraslan 0000-0003-2424-2269

Mustafa Can Güler 0000-0001-8588-1035

Saime Özbek Şebin 0000-0002-1738-4800

Selim Comaklı This is me 0000-0002-8744-7686

İlhami Gülçin 0000-0001-5993-1668

Project Number -
Publication Date March 30, 2022
Submission Date January 19, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Tanyeli, A., Ekinci Akdemir, F. N., Eraslan, E., Güler, M. C., et al. (2022). The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats. Clinical and Experimental Health Sciences, 12(1), 134-140. https://doi.org/10.33808/clinexphealthsci.864015
AMA Tanyeli A, Ekinci Akdemir FN, Eraslan E, Güler MC, Özbek Şebin S, Comaklı S, Gülçin İ. The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats. Clinical and Experimental Health Sciences. March 2022;12(1):134-140. doi:10.33808/clinexphealthsci.864015
Chicago Tanyeli, Ayhan, Fazile Nur Ekinci Akdemir, Ersen Eraslan, Mustafa Can Güler, Saime Özbek Şebin, Selim Comaklı, and İlhami Gülçin. “The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats”. Clinical and Experimental Health Sciences 12, no. 1 (March 2022): 134-40. https://doi.org/10.33808/clinexphealthsci.864015.
EndNote Tanyeli A, Ekinci Akdemir FN, Eraslan E, Güler MC, Özbek Şebin S, Comaklı S, Gülçin İ (March 1, 2022) The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats. Clinical and Experimental Health Sciences 12 1 134–140.
IEEE A. Tanyeli, “The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats”, Clinical and Experimental Health Sciences, vol. 12, no. 1, pp. 134–140, 2022, doi: 10.33808/clinexphealthsci.864015.
ISNAD Tanyeli, Ayhan et al. “The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats”. Clinical and Experimental Health Sciences 12/1 (March 2022), 134-140. https://doi.org/10.33808/clinexphealthsci.864015.
JAMA Tanyeli A, Ekinci Akdemir FN, Eraslan E, Güler MC, Özbek Şebin S, Comaklı S, Gülçin İ. The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats. Clinical and Experimental Health Sciences. 2022;12:134–140.
MLA Tanyeli, Ayhan et al. “The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats”. Clinical and Experimental Health Sciences, vol. 12, no. 1, 2022, pp. 134-40, doi:10.33808/clinexphealthsci.864015.
Vancouver Tanyeli A, Ekinci Akdemir FN, Eraslan E, Güler MC, Özbek Şebin S, Comaklı S, Gülçin İ. The Possible Useful Effectiveness of Sinapic Acid Sepsis-Induced Secondary Organ Damage in Rats. Clinical and Experimental Health Sciences. 2022;12(1):134-40.

14639   14640