Research Article
BibTex RIS Cite

Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium

Year 2024, Volume: 14 Issue: 3, 631 - 635, 30.09.2024
https://doi.org/10.33808/clinexphealthsci.1254942

Abstract

Objective: Pterygium is a fibrovascular conjunctival degeneration whose pathogenesis remains unclear, although many risk factors have been identified. In our study, we purposed to find the level of Actin Related Protein 2 (ACTR2) gene expression in healthy conjunctiva tissues and pterygium to increase our understanding of the pathogenesis of pterygium.
Methods: The study included 27 patients who underwent pterygium excision. ACTR2 mRNA expression level in healthy conjunctiva tissues and pterygium were determined by the Real-Time PCR method.
Results: According to the results we obtained, ACTR2 gene expression was increased in 74% (20/27) of our cases, while ACTR2 gene expression was decreased in 26% (7/27). ACTR2 mRNA expression was detected to be remarkably higher in pterygium in proportion to conjunctiva tissue (p<.05).
Conclusion: Our findings show that the ACTR2 gene and cell migration mechanism may play a role in the development of pterygium. However, supplementary research is requirement to determine the efficacy of the ACTR2 gene in pterygium disease and to better understand the relationship of the ACTR2 gene with pterygium.

Supporting Institution

The study was funded by Tokat Gaziosmanpasa University Scientific Research Projects

Project Number

2019/110

References

  • Celik SD, Ates O. Analysis of CRABP2 and FABP5 genes in primary and recurrent pterygium tissues. Molecular Biology Reports 2020;47:6105–6110. DOI:10.1007/s11033-020-05686-y
  • Yang Y, Chen SL, Xu Y, Yao Y, Liang JJ, Wang L, Jhanji V, Sun X, Ma D, Ng TK. Green tea catechins attenuate human primary pterygium cell survival and migration via modulation of ERK p42/p44 and p38 pathways. J Agric Food Chem. 2021;69(41):12209-12218. DOI:10.1021/acs.jafc.1c04422
  • Viana Wanzeler AC, Franca Barbosa IA, Duarte B, Borges D, Barbosa EB, Kamiji D, Gomes Huarachi DR, Barbosa de Melo M, Alves M. Mechanisms and biomarker candidates in pterygium development. Arq. Bras. Oftalmol. 2019;82(6). DOI:10.5935/0004-2749.20190103
  • Chu WK, Choi HL, Bhat AK, Jhanji V. Pterygium: New insights. Eye (Lond). 2020;34(6):1047–1050. DOI:10.1038/s41433-020-0786-3
  • Qin Z, Fu Q, Zhang L, Yin H, Jin X, Tang Q, Lyu D, Yao K. Proliferative effects of histamine on primary human pterygium fibroblasts. Mediators Inflamm. 2016;9862496. DOI:10.1155/2016/9862496
  • Ozturk BT, Yıldırım MS, Zamani A, Bozkurt B. K-ras oncogene mutation in pterygium. Eye 2017;31(3):491–498. DOI:10.1038/eye.2016.254
  • Detorakis ET, Zafiropoulos A, Arvanitis DA, Spandios DA. Detection of point mutations at codone 12 of K-ras in ophthalmic pterygia. Eye 2005;19(2):210–214.
  • Ramalho FS, Maestri C, Ramalho LNZ, Ribeiro-Silva A, Romão E. Expression of p63 and p16 in primary and recurrent pterygia. Graefes Arch Clin Exp Ophthalmol. 2006;244(10):1310-1314. DOI:10.1007/s00417-006-0287-5.
  • Chui J, Coroneo MT, Tat LT, Crouch R, Wakefield D, Girolamo ND. Ophthalmic pterygium. Am J Pathol. 2011;178(2):817–827. DOI:10.1016/j.ajpath.2010.10.037
  • He S, Wu Z. Biomarkers in the occurrence and development of pterygium. Ophthalmic Res. 2022;65:481–492. DOI:10.1159/000523878
  • Van Acker SI, Van den Bogerd B, Haagdorens M, Siozopoulou V, Dhubhghaill SN, Pintelon I, Koppen C. Pterygium—The good, the bad, and the ugly. Cells 2021;10(7):1567. DOI: 10.3390/cells10071567
  • Fonseca EC, Rocha EM, Arruda GV. Comparison among adjuvant treatments for primary pterygium: A network meta-analysis. Br J Ophthalmol. 2018;102:748–756. DOI:10.1136/bjophthalmol-2017-310288
  • Cao D, Chu WK, Ng TK, Yip YWY, Young AL, Pang CP, Jhanji V. Cellular proliferation and migration of human pterygium cells: mitomycin versus small-molecule inhibitors. Cornea 2018;37:760–766. DOI:10.1097/ICO.0000000000001569
  • Choi J, Lee YJ, Yoon YJ, Kim CH, Park SJ, Kim SY, Kim ND, Han DC, Kwon BM. Pimozide suppresses cancer cell migration and tumor metastasis through binding to ARPC2, a subunit of the Arp2/3 complex. Cancer Sci. 2019;110(12): 3788–3801. DOI:10.1111/cas.14205
  • Haarer EL, TheodoreCJ, Guo S, Frier RB, Campellone KG. Genomic instability caused by Arp2/3 complex inactivation results in micronucleus biogenesis and cellular senescence. PLoS Genet. 2023;19(1):e1010045. DOI:10.1371/journal.pgen.1010045
  • Paluck A, Osan J, Hollingsworth L, Talukdar SN, Saegh AA, Mehedi M. Role of ARP2/3 complex-driven actin polymerization in RSV infection. Pathogens. 2022;11(1):26. DOI:10.3390/pathogens11010026
  • Liu Y, Kim J, Philip R, Sridhar V, Chandrashekhar M, Moffat J, Breugel M, Pelletier L. Direct interaction between CEP85 and STIL mediates PLK4-driven directed cell migration. J Cell Sci. 2020;133(8):jcs238352. DOI:10.1242/jcs.238352
  • Su X, Wang S, Huo Y, Yang C. Short interfering RNA-mediated silencing of actin-related protein 2/3 complex subunit 4 inhibits the migration of SW620 human colorectal cancer cells. Oncol Lett. 2018;15(3):2847–2854. DOI:10.3892/ol.2017.7642
  • Huang S, Li D, Zhuang LL, Sun L, Wu J. Identification of Arp2/3 complex subunits as prognostic biomarkers for hepatocellular carcinoma. Front Mol Biosci. 2021;8:690151. DOI:10.3389/fmolb.2021.690151
  • Livak KJ, & Schmittgen TD. Analysis of relative gene expression data using real-time quantitave PCR and the 2(-DeltaDeltaC(T)) method. Methods 2001;25(4):402–408. DOI:10.1006/meth.2001.1262
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–1108 DOI:10.1038/nprot.2008.73
  • Hall AB. Understanding and managing pterygium. Community Eye Health. 2016;29(95): 54–56.
  • Bozkurt N, Ates O. Analysis of WWOX gene expression and protein levels in pterygium. Int Ophthalmol. 2020;40:1949–1953. DOI:10.1007/s10792-020-01368-7
  • Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal regulation of inflammation and its impact on skin blistering disease epidermolysis bullosa acquisita. Int J Mol Sci. 2016;17(7):1116. DOI:10.3390/ijms17071116
  • Chen D, Jiang L. Upregulation of actin-related protein 2 (actr2) exacerbated the malignancy of diffuse large b-cell lymphoma through activating wnt signaling. computational and mathematical methods in medicine. Computational and Mathematical Methods in Medicine 2022;9351921,p. 11. DOI:10.1155/2022/9351921
  • Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The actin regulators ınvolved in the function and related diseases of lymphocytes. Front. Immunol. 2022;13:799309. DOI:10.3389/fimmu.2022.799309
  • Wang J, Wu Y, Uddin MN, Chen R, Hao JP. Identification of potential key genes and regulatory markers in essential thrombocythemia through integrated bioinformatics analysis and clinical validation. Pharmacogenomics and Personalized Medicine 2021;14:767–784. DOI:10.2147/PGPM.S309166
  • Otsubo T, Iwaya K, Mukai Y, Mizokami Y, Serizawa H, Matsuoka T, Mukai K. Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod Pathol. 2004;17:461-467. DOI: 10.1038/modpathol.3800062
  • Zhang J, Liu Y, Yu CJ, Dai F, Xiong J, Li HJ, Wu ZS, Ding R, Wang H. Role of ARPC2 in human gastric cancer. Mediators Inflamm. 2017;5432818. DOI:10.1155/2017/5432818
  • Kim DH, Bae J, Lee JW, Kim SY, Kim YH, Bae JY, Yi JK, Yu MH, Noh DY, Lee C. Proteomic analysis of breast cancer tissue reveals upregulation of actin-remodeling proteins and its relevance to cancer invasiveness. Proteomics Clin Appl. 2009;3:30-40. DOI:10.1002/prca.200800167
  • Chen P, Yue X, Xiong H, Lu X, Ji Z. RBM3 upregulates ARPC2 by binding the 3'UTR and contributes to breast cancer progression. Int. J. Oncol. 2019;54(4):1387-1397. DOI:10.3892/ijo.2019.4698
  • Jaworski CJ, Aryankalayil-John M, Campos MM, Fariss RN, Rowsey J, Agarwalla N, Reid TW, Dushku N, Cox CA, Carper D,Wistow G. Expression analysis of human pterygium shows a predominance of conjunctival and limbal markers and genes associated with cell migration. Mol Vis. 2009; 15: 2421–2434.
Year 2024, Volume: 14 Issue: 3, 631 - 635, 30.09.2024
https://doi.org/10.33808/clinexphealthsci.1254942

Abstract

Project Number

2019/110

References

  • Celik SD, Ates O. Analysis of CRABP2 and FABP5 genes in primary and recurrent pterygium tissues. Molecular Biology Reports 2020;47:6105–6110. DOI:10.1007/s11033-020-05686-y
  • Yang Y, Chen SL, Xu Y, Yao Y, Liang JJ, Wang L, Jhanji V, Sun X, Ma D, Ng TK. Green tea catechins attenuate human primary pterygium cell survival and migration via modulation of ERK p42/p44 and p38 pathways. J Agric Food Chem. 2021;69(41):12209-12218. DOI:10.1021/acs.jafc.1c04422
  • Viana Wanzeler AC, Franca Barbosa IA, Duarte B, Borges D, Barbosa EB, Kamiji D, Gomes Huarachi DR, Barbosa de Melo M, Alves M. Mechanisms and biomarker candidates in pterygium development. Arq. Bras. Oftalmol. 2019;82(6). DOI:10.5935/0004-2749.20190103
  • Chu WK, Choi HL, Bhat AK, Jhanji V. Pterygium: New insights. Eye (Lond). 2020;34(6):1047–1050. DOI:10.1038/s41433-020-0786-3
  • Qin Z, Fu Q, Zhang L, Yin H, Jin X, Tang Q, Lyu D, Yao K. Proliferative effects of histamine on primary human pterygium fibroblasts. Mediators Inflamm. 2016;9862496. DOI:10.1155/2016/9862496
  • Ozturk BT, Yıldırım MS, Zamani A, Bozkurt B. K-ras oncogene mutation in pterygium. Eye 2017;31(3):491–498. DOI:10.1038/eye.2016.254
  • Detorakis ET, Zafiropoulos A, Arvanitis DA, Spandios DA. Detection of point mutations at codone 12 of K-ras in ophthalmic pterygia. Eye 2005;19(2):210–214.
  • Ramalho FS, Maestri C, Ramalho LNZ, Ribeiro-Silva A, Romão E. Expression of p63 and p16 in primary and recurrent pterygia. Graefes Arch Clin Exp Ophthalmol. 2006;244(10):1310-1314. DOI:10.1007/s00417-006-0287-5.
  • Chui J, Coroneo MT, Tat LT, Crouch R, Wakefield D, Girolamo ND. Ophthalmic pterygium. Am J Pathol. 2011;178(2):817–827. DOI:10.1016/j.ajpath.2010.10.037
  • He S, Wu Z. Biomarkers in the occurrence and development of pterygium. Ophthalmic Res. 2022;65:481–492. DOI:10.1159/000523878
  • Van Acker SI, Van den Bogerd B, Haagdorens M, Siozopoulou V, Dhubhghaill SN, Pintelon I, Koppen C. Pterygium—The good, the bad, and the ugly. Cells 2021;10(7):1567. DOI: 10.3390/cells10071567
  • Fonseca EC, Rocha EM, Arruda GV. Comparison among adjuvant treatments for primary pterygium: A network meta-analysis. Br J Ophthalmol. 2018;102:748–756. DOI:10.1136/bjophthalmol-2017-310288
  • Cao D, Chu WK, Ng TK, Yip YWY, Young AL, Pang CP, Jhanji V. Cellular proliferation and migration of human pterygium cells: mitomycin versus small-molecule inhibitors. Cornea 2018;37:760–766. DOI:10.1097/ICO.0000000000001569
  • Choi J, Lee YJ, Yoon YJ, Kim CH, Park SJ, Kim SY, Kim ND, Han DC, Kwon BM. Pimozide suppresses cancer cell migration and tumor metastasis through binding to ARPC2, a subunit of the Arp2/3 complex. Cancer Sci. 2019;110(12): 3788–3801. DOI:10.1111/cas.14205
  • Haarer EL, TheodoreCJ, Guo S, Frier RB, Campellone KG. Genomic instability caused by Arp2/3 complex inactivation results in micronucleus biogenesis and cellular senescence. PLoS Genet. 2023;19(1):e1010045. DOI:10.1371/journal.pgen.1010045
  • Paluck A, Osan J, Hollingsworth L, Talukdar SN, Saegh AA, Mehedi M. Role of ARP2/3 complex-driven actin polymerization in RSV infection. Pathogens. 2022;11(1):26. DOI:10.3390/pathogens11010026
  • Liu Y, Kim J, Philip R, Sridhar V, Chandrashekhar M, Moffat J, Breugel M, Pelletier L. Direct interaction between CEP85 and STIL mediates PLK4-driven directed cell migration. J Cell Sci. 2020;133(8):jcs238352. DOI:10.1242/jcs.238352
  • Su X, Wang S, Huo Y, Yang C. Short interfering RNA-mediated silencing of actin-related protein 2/3 complex subunit 4 inhibits the migration of SW620 human colorectal cancer cells. Oncol Lett. 2018;15(3):2847–2854. DOI:10.3892/ol.2017.7642
  • Huang S, Li D, Zhuang LL, Sun L, Wu J. Identification of Arp2/3 complex subunits as prognostic biomarkers for hepatocellular carcinoma. Front Mol Biosci. 2021;8:690151. DOI:10.3389/fmolb.2021.690151
  • Livak KJ, & Schmittgen TD. Analysis of relative gene expression data using real-time quantitave PCR and the 2(-DeltaDeltaC(T)) method. Methods 2001;25(4):402–408. DOI:10.1006/meth.2001.1262
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–1108 DOI:10.1038/nprot.2008.73
  • Hall AB. Understanding and managing pterygium. Community Eye Health. 2016;29(95): 54–56.
  • Bozkurt N, Ates O. Analysis of WWOX gene expression and protein levels in pterygium. Int Ophthalmol. 2020;40:1949–1953. DOI:10.1007/s10792-020-01368-7
  • Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal regulation of inflammation and its impact on skin blistering disease epidermolysis bullosa acquisita. Int J Mol Sci. 2016;17(7):1116. DOI:10.3390/ijms17071116
  • Chen D, Jiang L. Upregulation of actin-related protein 2 (actr2) exacerbated the malignancy of diffuse large b-cell lymphoma through activating wnt signaling. computational and mathematical methods in medicine. Computational and Mathematical Methods in Medicine 2022;9351921,p. 11. DOI:10.1155/2022/9351921
  • Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The actin regulators ınvolved in the function and related diseases of lymphocytes. Front. Immunol. 2022;13:799309. DOI:10.3389/fimmu.2022.799309
  • Wang J, Wu Y, Uddin MN, Chen R, Hao JP. Identification of potential key genes and regulatory markers in essential thrombocythemia through integrated bioinformatics analysis and clinical validation. Pharmacogenomics and Personalized Medicine 2021;14:767–784. DOI:10.2147/PGPM.S309166
  • Otsubo T, Iwaya K, Mukai Y, Mizokami Y, Serizawa H, Matsuoka T, Mukai K. Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod Pathol. 2004;17:461-467. DOI: 10.1038/modpathol.3800062
  • Zhang J, Liu Y, Yu CJ, Dai F, Xiong J, Li HJ, Wu ZS, Ding R, Wang H. Role of ARPC2 in human gastric cancer. Mediators Inflamm. 2017;5432818. DOI:10.1155/2017/5432818
  • Kim DH, Bae J, Lee JW, Kim SY, Kim YH, Bae JY, Yi JK, Yu MH, Noh DY, Lee C. Proteomic analysis of breast cancer tissue reveals upregulation of actin-remodeling proteins and its relevance to cancer invasiveness. Proteomics Clin Appl. 2009;3:30-40. DOI:10.1002/prca.200800167
  • Chen P, Yue X, Xiong H, Lu X, Ji Z. RBM3 upregulates ARPC2 by binding the 3'UTR and contributes to breast cancer progression. Int. J. Oncol. 2019;54(4):1387-1397. DOI:10.3892/ijo.2019.4698
  • Jaworski CJ, Aryankalayil-John M, Campos MM, Fariss RN, Rowsey J, Agarwalla N, Reid TW, Dushku N, Cox CA, Carper D,Wistow G. Expression analysis of human pterygium shows a predominance of conjunctival and limbal markers and genes associated with cell migration. Mol Vis. 2009; 15: 2421–2434.
There are 32 citations in total.

Details

Primary Language English
Subjects Medical Genetics (Excl. Cancer Genetics)
Journal Section Articles
Authors

Soran Abdullah 0000-0002-5909-0026

Kübra Şahin 0000-0001-9870-0176

Ömer Ateş 0000-0003-4266-393X

Nihan Bozkurt 0000-0002-2283-0828

Sadegul Tuncer Savkin 0000-0002-9284-9102

Helin Deniz Demir 0000-0003-4396-0872

Ramazan Tetikçok This is me 0000-0001-7343-4107

Project Number 2019/110
Early Pub Date September 27, 2024
Publication Date September 30, 2024
Submission Date February 22, 2023
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Abdullah, S., Şahin, K., Ateş, Ö., Bozkurt, N., et al. (2024). Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium. Clinical and Experimental Health Sciences, 14(3), 631-635. https://doi.org/10.33808/clinexphealthsci.1254942
AMA Abdullah S, Şahin K, Ateş Ö, Bozkurt N, Savkin ST, Deniz Demir H, Tetikçok R. Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium. Clinical and Experimental Health Sciences. September 2024;14(3):631-635. doi:10.33808/clinexphealthsci.1254942
Chicago Abdullah, Soran, Kübra Şahin, Ömer Ateş, Nihan Bozkurt, Sadegul Tuncer Savkin, Helin Deniz Demir, and Ramazan Tetikçok. “Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium”. Clinical and Experimental Health Sciences 14, no. 3 (September 2024): 631-35. https://doi.org/10.33808/clinexphealthsci.1254942.
EndNote Abdullah S, Şahin K, Ateş Ö, Bozkurt N, Savkin ST, Deniz Demir H, Tetikçok R (September 1, 2024) Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium. Clinical and Experimental Health Sciences 14 3 631–635.
IEEE S. Abdullah, K. Şahin, Ö. Ateş, N. Bozkurt, S. T. Savkin, H. Deniz Demir, and R. Tetikçok, “Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium”, Clinical and Experimental Health Sciences, vol. 14, no. 3, pp. 631–635, 2024, doi: 10.33808/clinexphealthsci.1254942.
ISNAD Abdullah, Soran et al. “Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium”. Clinical and Experimental Health Sciences 14/3 (September 2024), 631-635. https://doi.org/10.33808/clinexphealthsci.1254942.
JAMA Abdullah S, Şahin K, Ateş Ö, Bozkurt N, Savkin ST, Deniz Demir H, Tetikçok R. Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium. Clinical and Experimental Health Sciences. 2024;14:631–635.
MLA Abdullah, Soran et al. “Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium”. Clinical and Experimental Health Sciences, vol. 14, no. 3, 2024, pp. 631-5, doi:10.33808/clinexphealthsci.1254942.
Vancouver Abdullah S, Şahin K, Ateş Ö, Bozkurt N, Savkin ST, Deniz Demir H, Tetikçok R. Increased Expression of the Actin-Related Protein 2 (ACTR2) Gene in Pterygium. Clinical and Experimental Health Sciences. 2024;14(3):631-5.

14639   14640