Research Article
BibTex RIS Cite

Lower estimates on the condition number of a Toeplitz sinc matrix and related questions

Year 2022, , 168 - 182, 15.09.2022
https://doi.org/10.33205/cma.1142905

Abstract

As one new result, for a symmetric Toeplitz $ \operatorname{sinc} $ $n \times n$-matrix $A(t)$ depending on a parameter $t$, lower estimates (tending to infinity as t vanishes) on the pertinent condition number are derived. A further important finding is that prior to improving the obtained lower estimates it seems to be more important to determine the lower bound on the parameter $t$ such that the smallest eigenvalue $\mu_n(t)$ of $A(t)$ can be reliably computed since this is a precondition for determining a reliable value for the condition number of the Toeplitz $ \operatorname{sinc} $ matrix. The style of the paper is expository in order to address a large readership.

Supporting Institution

There is no Supporting Institution

Project Number

There is no Project Number

References

  • D. Hertz: Simple Bounds on the Extreme Eigenvalues of Toeplitz Matrices, IEEE Transactions on Information Theory, 38 (1) (1992), 175–176.
  • N. J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia (1996).
  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. Stummel: Diskrete Approximation linear Operatoren. II (Discrete Approximation of Linear Operators. II). Math. Z., 120 (1971), 231–264.
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis (English Translation by E.R. Dawson of the First Edition of the German Original of 1971), Scottish Academic Press, Edinburgh (1980).
  • F. Stummel, K. Hainer: Praktische Mathematik (Introduction to Numerical Analysis), Second Edition, B.G. Teubner, Stuttgart (1982).
  • F. Stummel, L. Kohaupt: Eigenwertaufgaben in Hilbertschen Räumne. Mit Aufgaben und vollständigen Lösungen, (Eigenvalue Problems in Hilbert spaces. With Exercises and Complete Solutions), Logos Verlag, Berlin (2021).
  • J. H. Wilkinson: The Algebraic Eigenvalue Problem, Oxford University Press, Oxford (1965).
  • Y.Wu: On the positiveness of a functional symmetric matrix used in digital filter design, Journal of Circuits, Systems, and Computers, 13 (5) (2004), 1105–1110.
  • Y. Wu, D. H. Mugler: A robust DSP integrator for acceleration signals, IEEE Transactions on Biomedical Engineering, Vol. 51 (2) (2004), 385–389.
  • Y. Wu, N. Sepehri: Interpolation of bandlimited signals from uniform or non-uniform integral samples, Electronic Letters, 47 (1) (2011), 6th Jan.
Year 2022, , 168 - 182, 15.09.2022
https://doi.org/10.33205/cma.1142905

Abstract

Project Number

There is no Project Number

References

  • D. Hertz: Simple Bounds on the Extreme Eigenvalues of Toeplitz Matrices, IEEE Transactions on Information Theory, 38 (1) (1992), 175–176.
  • N. J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia (1996).
  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. Stummel: Diskrete Approximation linear Operatoren. II (Discrete Approximation of Linear Operators. II). Math. Z., 120 (1971), 231–264.
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis (English Translation by E.R. Dawson of the First Edition of the German Original of 1971), Scottish Academic Press, Edinburgh (1980).
  • F. Stummel, K. Hainer: Praktische Mathematik (Introduction to Numerical Analysis), Second Edition, B.G. Teubner, Stuttgart (1982).
  • F. Stummel, L. Kohaupt: Eigenwertaufgaben in Hilbertschen Räumne. Mit Aufgaben und vollständigen Lösungen, (Eigenvalue Problems in Hilbert spaces. With Exercises and Complete Solutions), Logos Verlag, Berlin (2021).
  • J. H. Wilkinson: The Algebraic Eigenvalue Problem, Oxford University Press, Oxford (1965).
  • Y.Wu: On the positiveness of a functional symmetric matrix used in digital filter design, Journal of Circuits, Systems, and Computers, 13 (5) (2004), 1105–1110.
  • Y. Wu, D. H. Mugler: A robust DSP integrator for acceleration signals, IEEE Transactions on Biomedical Engineering, Vol. 51 (2) (2004), 385–389.
  • Y. Wu, N. Sepehri: Interpolation of bandlimited signals from uniform or non-uniform integral samples, Electronic Letters, 47 (1) (2011), 6th Jan.
There are 11 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Articles
Authors

Ludwig Kohaupt 0000-0003-4364-9144

Yan Wu 0000-0002-7202-8980

Project Number There is no Project Number
Publication Date September 15, 2022
Published in Issue Year 2022

Cite

APA Kohaupt, L., & Wu, Y. (2022). Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. Constructive Mathematical Analysis, 5(3), 168-182. https://doi.org/10.33205/cma.1142905
AMA Kohaupt L, Wu Y. Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. CMA. September 2022;5(3):168-182. doi:10.33205/cma.1142905
Chicago Kohaupt, Ludwig, and Yan Wu. “Lower Estimates on the Condition Number of a Toeplitz Sinc Matrix and Related Questions”. Constructive Mathematical Analysis 5, no. 3 (September 2022): 168-82. https://doi.org/10.33205/cma.1142905.
EndNote Kohaupt L, Wu Y (September 1, 2022) Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. Constructive Mathematical Analysis 5 3 168–182.
IEEE L. Kohaupt and Y. Wu, “Lower estimates on the condition number of a Toeplitz sinc matrix and related questions”, CMA, vol. 5, no. 3, pp. 168–182, 2022, doi: 10.33205/cma.1142905.
ISNAD Kohaupt, Ludwig - Wu, Yan. “Lower Estimates on the Condition Number of a Toeplitz Sinc Matrix and Related Questions”. Constructive Mathematical Analysis 5/3 (September 2022), 168-182. https://doi.org/10.33205/cma.1142905.
JAMA Kohaupt L, Wu Y. Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. CMA. 2022;5:168–182.
MLA Kohaupt, Ludwig and Yan Wu. “Lower Estimates on the Condition Number of a Toeplitz Sinc Matrix and Related Questions”. Constructive Mathematical Analysis, vol. 5, no. 3, 2022, pp. 168-82, doi:10.33205/cma.1142905.
Vancouver Kohaupt L, Wu Y. Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. CMA. 2022;5(3):168-82.