Research Article
BibTex RIS Cite

On the eigenvalue-separation properties of real tridiagonal matrices

Year 2023, , 210 - 221, 15.12.2023
https://doi.org/10.33205/cma.1330647

Abstract

In this paper, we give a simple sufficient condition for the eigenvalue-separation properties of real tridiagonal matrices T. This result is much more than the statement that the pertinent eigenvalues are distinct. Its derivation is based on recurrence formulae satisfied by the polynomials made up by the minors of the characteristic polynomial det(xE-T) that are proven to form a Sturm sequence. This is a new result, and it proves the simple spectrum property of a symmetric tridiagonal matrix studied in Grünbaum's paper. Two numerical examples underpin the theoretical findings. The style of the paper is expository in order to address a large readership.

Thanks

Thank you for your consideration of the submitted manuscript. We look forward to hearing from you.

References

  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. A. Grünbaum: Toeplitz Matrices Commuting with Tridiagonal Matrices, Linear Algebra Appl., 40 (1981), 25–36.
  • M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (Foundations of Numerical Analysis and Scientific Computing), B. G. Teubner, Stuttgart, Leipzig, Wiesbaden (2002).
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis, (English Translation by E.R. Dawson of the First Edition of the German Original of 1971,) Scottish Academic Press, Edinburgh (1980).
Year 2023, , 210 - 221, 15.12.2023
https://doi.org/10.33205/cma.1330647

Abstract

References

  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. A. Grünbaum: Toeplitz Matrices Commuting with Tridiagonal Matrices, Linear Algebra Appl., 40 (1981), 25–36.
  • M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (Foundations of Numerical Analysis and Scientific Computing), B. G. Teubner, Stuttgart, Leipzig, Wiesbaden (2002).
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis, (English Translation by E.R. Dawson of the First Edition of the German Original of 1971,) Scottish Academic Press, Edinburgh (1980).
There are 4 citations in total.

Details

Primary Language English
Subjects Numerical and Computational Mathematics (Other)
Journal Section Articles
Authors

Yan Wu 0000-0002-7202-8980

Ludwig Kohaupt 0000-0003-1781-0600

Early Pub Date October 20, 2023
Publication Date December 15, 2023
Published in Issue Year 2023

Cite

APA Wu, Y., & Kohaupt, L. (2023). On the eigenvalue-separation properties of real tridiagonal matrices. Constructive Mathematical Analysis, 6(4), 210-221. https://doi.org/10.33205/cma.1330647
AMA Wu Y, Kohaupt L. On the eigenvalue-separation properties of real tridiagonal matrices. CMA. December 2023;6(4):210-221. doi:10.33205/cma.1330647
Chicago Wu, Yan, and Ludwig Kohaupt. “On the Eigenvalue-Separation Properties of Real Tridiagonal Matrices”. Constructive Mathematical Analysis 6, no. 4 (December 2023): 210-21. https://doi.org/10.33205/cma.1330647.
EndNote Wu Y, Kohaupt L (December 1, 2023) On the eigenvalue-separation properties of real tridiagonal matrices. Constructive Mathematical Analysis 6 4 210–221.
IEEE Y. Wu and L. Kohaupt, “On the eigenvalue-separation properties of real tridiagonal matrices”, CMA, vol. 6, no. 4, pp. 210–221, 2023, doi: 10.33205/cma.1330647.
ISNAD Wu, Yan - Kohaupt, Ludwig. “On the Eigenvalue-Separation Properties of Real Tridiagonal Matrices”. Constructive Mathematical Analysis 6/4 (December 2023), 210-221. https://doi.org/10.33205/cma.1330647.
JAMA Wu Y, Kohaupt L. On the eigenvalue-separation properties of real tridiagonal matrices. CMA. 2023;6:210–221.
MLA Wu, Yan and Ludwig Kohaupt. “On the Eigenvalue-Separation Properties of Real Tridiagonal Matrices”. Constructive Mathematical Analysis, vol. 6, no. 4, 2023, pp. 210-21, doi:10.33205/cma.1330647.
Vancouver Wu Y, Kohaupt L. On the eigenvalue-separation properties of real tridiagonal matrices. CMA. 2023;6(4):210-21.