Research Article
BibTex RIS Cite

Some recent and new fixed point results on orthogonal metric-like space

Year 2023, , 184 - 197, 15.09.2023
https://doi.org/10.33205/cma.1360402

Abstract

In this paper, we give some recent and new results for some contraction mappings on O−complete metric-like space and also we give illustrative examples. At the end, we give an application to show the existence of a solution of a differential equation.

References

  • H. Aydi, A. Felhic and H.Afsharid: New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 780-788.
  • Ö. Acar, A. S. Özkapu: Multivalued rational type F−contraction on orthogonal metric space, Math. Found. Comput., 6 (3) (2023), 303–312.
  • Ö. Acar, E. Erdo˘gan: Some fixed point results for almost contraction on orthogonal metric space, Creat. Math. Inform., 31 (2) (2022), 147–153.
  • Ö. Acar, A. S. Özkapu and E. Erdo˘gan: Some Fixed Point Results on Orthogonal Metric Space, Bull. Comput. Appl. Math., 50 (1) (2023), 53–59.
  • S. S. Mohammed, M. Alansari, A. Azam and S. Kanwal: Fixed points of (φ, F) -weak contractions on metric-like spaces with applications to integral equations on time scales, Bol. Soc. Mat. Mex., 27 (2) (2021), ARTICLE ID: 39.
  • A. Amini-Harandi: Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages.
  • S. Banach, Sur les opérations dans les ensembles abstraits et leurs applicationsauxéquations int égrales, Fund. Math., 3 (1992), 133–181.
  • S. Kanokwan, W. Sintunavarat and Y. J. Cho: Fixed point theorems for orthogonal F−contraction mappings on O-complete metric space, J. Fixed Point Theory Appl., (2020) 22:10.
  • D. O’Regan: Equilibria for abstract economies in Hausdorff topological vector spaces, Constr. Math. Anal., 5 (2) (2022), 54–59.
  • E. Karapınar: A Short Survey on the Recent Fixed Point Results on b−Metric Spaces, Constr. Math. Anal., 1 (1) (2018), 15–44.
  • R. Heckmann: Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, 7 (1999) 71–83.
  • M.E. Gordji, M. Rameani, M. De La Sen and Y. J. Cho: On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), 569–578.
  • M. E. Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, Journal of Linear and Topological Algebra (JLTA), 6 (3), 251–260.
  • N. B. Gungor: Extensions of Orthogonal p−Contraction on Orthogonal Metric Spaces, Symmetry, 14 2022, 746.
  • M. Jleli, B. Samet and C. Vetro: Fixed point theory in partial metric spaces via ϕ-fixed point’s concept in metric spaces, J. Inequal. Appl., 2014:426 (2014), 9 pp.
  • E. Karapınar, P. Salimi: Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 19 pages.
  • E. Karapınar, H. H. Alsulami and M. Noorwali: Some extensions for Geragthy type contractive mappings, Fixed Point Theory Appl., 2015 (2015), 22 pages.
  • S. G. Matthews: Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183–197.
  • M. Nazam, H. Aydi and A. Hussain: Existence theorems for (Ψ, Φ)−orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 72 (7) (2023), 1899–1929.
  • M. Nazam, C. Park and M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differential Equations, 2021:247 (2021).
  • S. Som, A. Dey Petru¸sel and K. Lakshmi: Some remarks on the metrizability of some metric-like structures, Carpathian J. Math., 37 (2) (2021), 265–272.
  • K., Sawangsup, W., Sintunavarat and Y. J., Cho: Fixed point theorems for orthogonal F−contraction mappings on O−complete metric spaces, J. Fixed Point Theorey Appl., 22:10 (2020).
  • K. Sawangsup, W. Sintunavarat: Fixed Point Results for Orthogonal Z−Contraction Mappings in O−Complete Metric Spaces, Int. J. Appl. Physics Math., 10 (1) (2020), 33–40.
  • B. Singh, V. Singh, I. Uddin and Ö. Acar: Fixed point theorems on an orthogonal metric space using Matkowski type contraction, Carpathian Math. Publ., 14 (1) (2022), 127–134.
  • A. Alsaadi, B. Singh, V. Singh and I. Uddin: Meir-Keeler type contraction in orthogonal M−metric spaces, Symmetry, 14 (9) (2022), 1856.
  • C. Vetro: A fixed-point problem with mixed-type contractive condition, Constr. Math. Anal., 3 (1) (2020), 45–52.
  • Z. Kadelburg, S. Radenovic: Notes on Some Recent Papers Concerning F−Contractions in b-Metric Spaces, Constr. Math. Anal., 1 (2) (2018), 108–112.
  • D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), ARTICLE ID: 94.
Year 2023, , 184 - 197, 15.09.2023
https://doi.org/10.33205/cma.1360402

Abstract

References

  • H. Aydi, A. Felhic and H.Afsharid: New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 780-788.
  • Ö. Acar, A. S. Özkapu: Multivalued rational type F−contraction on orthogonal metric space, Math. Found. Comput., 6 (3) (2023), 303–312.
  • Ö. Acar, E. Erdo˘gan: Some fixed point results for almost contraction on orthogonal metric space, Creat. Math. Inform., 31 (2) (2022), 147–153.
  • Ö. Acar, A. S. Özkapu and E. Erdo˘gan: Some Fixed Point Results on Orthogonal Metric Space, Bull. Comput. Appl. Math., 50 (1) (2023), 53–59.
  • S. S. Mohammed, M. Alansari, A. Azam and S. Kanwal: Fixed points of (φ, F) -weak contractions on metric-like spaces with applications to integral equations on time scales, Bol. Soc. Mat. Mex., 27 (2) (2021), ARTICLE ID: 39.
  • A. Amini-Harandi: Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages.
  • S. Banach, Sur les opérations dans les ensembles abstraits et leurs applicationsauxéquations int égrales, Fund. Math., 3 (1992), 133–181.
  • S. Kanokwan, W. Sintunavarat and Y. J. Cho: Fixed point theorems for orthogonal F−contraction mappings on O-complete metric space, J. Fixed Point Theory Appl., (2020) 22:10.
  • D. O’Regan: Equilibria for abstract economies in Hausdorff topological vector spaces, Constr. Math. Anal., 5 (2) (2022), 54–59.
  • E. Karapınar: A Short Survey on the Recent Fixed Point Results on b−Metric Spaces, Constr. Math. Anal., 1 (1) (2018), 15–44.
  • R. Heckmann: Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, 7 (1999) 71–83.
  • M.E. Gordji, M. Rameani, M. De La Sen and Y. J. Cho: On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), 569–578.
  • M. E. Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, Journal of Linear and Topological Algebra (JLTA), 6 (3), 251–260.
  • N. B. Gungor: Extensions of Orthogonal p−Contraction on Orthogonal Metric Spaces, Symmetry, 14 2022, 746.
  • M. Jleli, B. Samet and C. Vetro: Fixed point theory in partial metric spaces via ϕ-fixed point’s concept in metric spaces, J. Inequal. Appl., 2014:426 (2014), 9 pp.
  • E. Karapınar, P. Salimi: Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 19 pages.
  • E. Karapınar, H. H. Alsulami and M. Noorwali: Some extensions for Geragthy type contractive mappings, Fixed Point Theory Appl., 2015 (2015), 22 pages.
  • S. G. Matthews: Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183–197.
  • M. Nazam, H. Aydi and A. Hussain: Existence theorems for (Ψ, Φ)−orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 72 (7) (2023), 1899–1929.
  • M. Nazam, C. Park and M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differential Equations, 2021:247 (2021).
  • S. Som, A. Dey Petru¸sel and K. Lakshmi: Some remarks on the metrizability of some metric-like structures, Carpathian J. Math., 37 (2) (2021), 265–272.
  • K., Sawangsup, W., Sintunavarat and Y. J., Cho: Fixed point theorems for orthogonal F−contraction mappings on O−complete metric spaces, J. Fixed Point Theorey Appl., 22:10 (2020).
  • K. Sawangsup, W. Sintunavarat: Fixed Point Results for Orthogonal Z−Contraction Mappings in O−Complete Metric Spaces, Int. J. Appl. Physics Math., 10 (1) (2020), 33–40.
  • B. Singh, V. Singh, I. Uddin and Ö. Acar: Fixed point theorems on an orthogonal metric space using Matkowski type contraction, Carpathian Math. Publ., 14 (1) (2022), 127–134.
  • A. Alsaadi, B. Singh, V. Singh and I. Uddin: Meir-Keeler type contraction in orthogonal M−metric spaces, Symmetry, 14 (9) (2022), 1856.
  • C. Vetro: A fixed-point problem with mixed-type contractive condition, Constr. Math. Anal., 3 (1) (2020), 45–52.
  • Z. Kadelburg, S. Radenovic: Notes on Some Recent Papers Concerning F−Contractions in b-Metric Spaces, Constr. Math. Anal., 1 (2) (2018), 108–112.
  • D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), ARTICLE ID: 94.
There are 28 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Özlem Acar 0000-0001-6052-4357

Early Pub Date September 14, 2023
Publication Date September 15, 2023
Published in Issue Year 2023

Cite

APA Acar, Ö. (2023). Some recent and new fixed point results on orthogonal metric-like space. Constructive Mathematical Analysis, 6(3), 184-197. https://doi.org/10.33205/cma.1360402
AMA Acar Ö. Some recent and new fixed point results on orthogonal metric-like space. CMA. September 2023;6(3):184-197. doi:10.33205/cma.1360402
Chicago Acar, Özlem. “Some Recent and New Fixed Point Results on Orthogonal Metric-Like Space”. Constructive Mathematical Analysis 6, no. 3 (September 2023): 184-97. https://doi.org/10.33205/cma.1360402.
EndNote Acar Ö (September 1, 2023) Some recent and new fixed point results on orthogonal metric-like space. Constructive Mathematical Analysis 6 3 184–197.
IEEE Ö. Acar, “Some recent and new fixed point results on orthogonal metric-like space”, CMA, vol. 6, no. 3, pp. 184–197, 2023, doi: 10.33205/cma.1360402.
ISNAD Acar, Özlem. “Some Recent and New Fixed Point Results on Orthogonal Metric-Like Space”. Constructive Mathematical Analysis 6/3 (September 2023), 184-197. https://doi.org/10.33205/cma.1360402.
JAMA Acar Ö. Some recent and new fixed point results on orthogonal metric-like space. CMA. 2023;6:184–197.
MLA Acar, Özlem. “Some Recent and New Fixed Point Results on Orthogonal Metric-Like Space”. Constructive Mathematical Analysis, vol. 6, no. 3, 2023, pp. 184-97, doi:10.33205/cma.1360402.
Vancouver Acar Ö. Some recent and new fixed point results on orthogonal metric-like space. CMA. 2023;6(3):184-97.