Research Article
BibTex RIS Cite

Fractional proportional linear control systems: A geometric perspective on controllability and observability

Year 2024, , 77 - 89, 15.06.2024
https://doi.org/10.33205/cma.1454113

Abstract

The paper presents a detailed analysis of control and observation of generalized Caputo proportional fractional time-invariant linear systems. The focus is on identifying controllable states and observable systems within the controllable subspace, null space, and unobservable subspace of the proposed system. The necessary conditions for the controllable subspace and the necessary and sufficient conditions for observability criteria are firmly established. The controllable subspace is treated geometrically as the set of controllable states, while the observable system is characterized by a zero unobservable subspace. The results are reinforced by examples and will immensely benefit future studies on fractional-order control systems.

Thanks

The authors A. Mukheimer and T. Abdeljawad would like to thank Prince sultan University for the support through TAS reseacrh lab.

References

  • D. R. Anderson, D. J. Ulness: Newly defined conformable derivatives, Adv. Dyn. Syst. Appl, 10 (2015), 109–137.
  • Z. Al-Zhour: Controllability and observability behaviors of a non-homogeneous conformable fractional dynamical system compatible with some electrical applications, Alexandria Engineering Journal, 61 (2022), 1055–1067.
  • K. Balachandran, M. Matar and J. J. Trujillo: Note on controllability of linear fractional dynamical systems, J. Control Decis., 3 (2016), 267–279.
  • M. Bohner, K. S. Vidhyaa, E. Thandapani: Oscillation of noncanonical second- order advanced differential equations via canonical transform, Constr. Math. Anal., 5 (1) (2022), 7–13.
  • K. Bukhsh, A. Younus: On the controllability and observability of fractional proportional linear systems, Internat. J. Systems Sci., 54 (2023), 1410–1422.
  • A. Da Silva: Controllability of linear systems on solvable Lie groups, SIAM J. Control Optim., 54 (2016), 372–390.
  • D. Ding, X. Zhang, J. Cao, N. Wang and D. Liang: Bifurcation control of complex networks model via PD controller, Neurocomputing, 175 (2016), 1–9.
  • Z. Ge: Controllability and observability of stochastic singular systems in Banach spaces, J. Syst. Sci. Complex., 35 (2022), 194–204.
  • K. A. Grasse, N. Ho: Simulation relations and controllability properties of linear and nonlinear control systems, SIAM J. Control Optim., 53 (2015), 1346–1374.
  • T. L. Guo: Controllability and observability of impulsive fractional linear time-invariant system, Comput. Math. Appl., 64 (2012), 3171–3182.
  • F. Jarad, M. A. Alqudah and T. Abdeljawad: On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176.
  • F. Jarad, T. Abdeljawad and J. Alzabut: Generalized fractional derivatives generated by a class of local proportional derivatives, E. P. J. Special Topics, 226 (2017), 3457–3471.
  • T. Kaczorek: Cayley–Hamilton theorem for fractional linear systems, In Theory and Applications of Non-integer Order Systems: 8th Conference on Non-integer Order Calculus and Its Applications, Zakopane, Poland, Springer International Publishing, (2017), 45–55.
  • R. E. Kalman: Mathematical description of linear dynamical systems, Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1 (1963), 152–192.
  • R. E. Kalman: Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, 5 (1960), 102–119.
  • A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006).
  • A. A. Kilbas, O. I. Marichev and S. G. Samko: Fractional integrals and derivatives (theory and applications), CRC Press, India (1993).
  • Y. Li, K. H. Ang and G. C. Chong: PID control system analysis and design, IEEE Control Systems Magazine, 26 (2006), 32–41.
  • G. Mazanti,: Relative controllability of linear difference equations, SIAM J. Control Optim., 55 (2017), 3132–3153.
  • M. Popolizio: On the matrix Mittag–Leffler function: theoretical properties and numerical computation, Mathematics, 7 (2019), 1140.
  • I. Podlubny: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier (1998).
  • J. D. J. Rubio, E. Orozco, D. A. Cordova, M. A. Islas, J. Pacheco, G. J. Gutierrez, ... and D. Mujica-Vargas: Modified linear technique for the controllability and observability of robotic arms, IEEE Access, 10 (2022), 3366-3377.
  • W. J. Rugh: Linear system theory, Prentice-Hall, Inc (1996).
  • J. L. Šaji´c, S. Langthaler, J. Schröttner and C. Baumgartner: System identification and mathematical modeling of the pandemic spread COVID-19 in Serbia, IFAC-PapersOnLine, 55 (2022), 19–24.
  • V. Singh, D. N. Pandey: Controllability of multi-term time-fractional differential systems, J. Control Decis., 7 (2020), 109–125.
  • J.Wang, Y. Zheng, K. Li and Q. Xu: DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow, IEEE Transactions on Control Systems Technology, 31 (6) (2023), 2760–2776.
  • L. Wang, Q. Yan and H. Yu: Constrained approximate null controllability of the coupled heat equation with impulse controls, SIAM J. Control Optim., 59 (2021), 3418–3446.
  • J. Wei: The controllability of fractional control systems with control delay, Comput. Math. Appl., 64 (2012), 3153–3159.
  • H. Zhang, I. Ahmad, G. Rahman and S. Ahmad: Investigation for Existence, Controllability & Observability of a Fractional order Delay Dynamical System, Authorea Preprints, (2022).
Year 2024, , 77 - 89, 15.06.2024
https://doi.org/10.33205/cma.1454113

Abstract

References

  • D. R. Anderson, D. J. Ulness: Newly defined conformable derivatives, Adv. Dyn. Syst. Appl, 10 (2015), 109–137.
  • Z. Al-Zhour: Controllability and observability behaviors of a non-homogeneous conformable fractional dynamical system compatible with some electrical applications, Alexandria Engineering Journal, 61 (2022), 1055–1067.
  • K. Balachandran, M. Matar and J. J. Trujillo: Note on controllability of linear fractional dynamical systems, J. Control Decis., 3 (2016), 267–279.
  • M. Bohner, K. S. Vidhyaa, E. Thandapani: Oscillation of noncanonical second- order advanced differential equations via canonical transform, Constr. Math. Anal., 5 (1) (2022), 7–13.
  • K. Bukhsh, A. Younus: On the controllability and observability of fractional proportional linear systems, Internat. J. Systems Sci., 54 (2023), 1410–1422.
  • A. Da Silva: Controllability of linear systems on solvable Lie groups, SIAM J. Control Optim., 54 (2016), 372–390.
  • D. Ding, X. Zhang, J. Cao, N. Wang and D. Liang: Bifurcation control of complex networks model via PD controller, Neurocomputing, 175 (2016), 1–9.
  • Z. Ge: Controllability and observability of stochastic singular systems in Banach spaces, J. Syst. Sci. Complex., 35 (2022), 194–204.
  • K. A. Grasse, N. Ho: Simulation relations and controllability properties of linear and nonlinear control systems, SIAM J. Control Optim., 53 (2015), 1346–1374.
  • T. L. Guo: Controllability and observability of impulsive fractional linear time-invariant system, Comput. Math. Appl., 64 (2012), 3171–3182.
  • F. Jarad, M. A. Alqudah and T. Abdeljawad: On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176.
  • F. Jarad, T. Abdeljawad and J. Alzabut: Generalized fractional derivatives generated by a class of local proportional derivatives, E. P. J. Special Topics, 226 (2017), 3457–3471.
  • T. Kaczorek: Cayley–Hamilton theorem for fractional linear systems, In Theory and Applications of Non-integer Order Systems: 8th Conference on Non-integer Order Calculus and Its Applications, Zakopane, Poland, Springer International Publishing, (2017), 45–55.
  • R. E. Kalman: Mathematical description of linear dynamical systems, Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1 (1963), 152–192.
  • R. E. Kalman: Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, 5 (1960), 102–119.
  • A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006).
  • A. A. Kilbas, O. I. Marichev and S. G. Samko: Fractional integrals and derivatives (theory and applications), CRC Press, India (1993).
  • Y. Li, K. H. Ang and G. C. Chong: PID control system analysis and design, IEEE Control Systems Magazine, 26 (2006), 32–41.
  • G. Mazanti,: Relative controllability of linear difference equations, SIAM J. Control Optim., 55 (2017), 3132–3153.
  • M. Popolizio: On the matrix Mittag–Leffler function: theoretical properties and numerical computation, Mathematics, 7 (2019), 1140.
  • I. Podlubny: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier (1998).
  • J. D. J. Rubio, E. Orozco, D. A. Cordova, M. A. Islas, J. Pacheco, G. J. Gutierrez, ... and D. Mujica-Vargas: Modified linear technique for the controllability and observability of robotic arms, IEEE Access, 10 (2022), 3366-3377.
  • W. J. Rugh: Linear system theory, Prentice-Hall, Inc (1996).
  • J. L. Šaji´c, S. Langthaler, J. Schröttner and C. Baumgartner: System identification and mathematical modeling of the pandemic spread COVID-19 in Serbia, IFAC-PapersOnLine, 55 (2022), 19–24.
  • V. Singh, D. N. Pandey: Controllability of multi-term time-fractional differential systems, J. Control Decis., 7 (2020), 109–125.
  • J.Wang, Y. Zheng, K. Li and Q. Xu: DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow, IEEE Transactions on Control Systems Technology, 31 (6) (2023), 2760–2776.
  • L. Wang, Q. Yan and H. Yu: Constrained approximate null controllability of the coupled heat equation with impulse controls, SIAM J. Control Optim., 59 (2021), 3418–3446.
  • J. Wei: The controllability of fractional control systems with control delay, Comput. Math. Appl., 64 (2012), 3153–3159.
  • H. Zhang, I. Ahmad, G. Rahman and S. Ahmad: Investigation for Existence, Controllability & Observability of a Fractional order Delay Dynamical System, Authorea Preprints, (2022).
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Khizra Bukhsh 0009-0002-9809-9047

Awais Younus 0000-0002-0590-6691

Aiman Mukheimer 0000-0001-8798-3297

Thabet Abdeljawad 0000-0002-8889-3768

Early Pub Date June 10, 2024
Publication Date June 15, 2024
Submission Date March 17, 2024
Acceptance Date June 3, 2024
Published in Issue Year 2024

Cite

APA Bukhsh, K., Younus, A., Mukheimer, A., Abdeljawad, T. (2024). Fractional proportional linear control systems: A geometric perspective on controllability and observability. Constructive Mathematical Analysis, 7(2), 77-89. https://doi.org/10.33205/cma.1454113
AMA Bukhsh K, Younus A, Mukheimer A, Abdeljawad T. Fractional proportional linear control systems: A geometric perspective on controllability and observability. CMA. June 2024;7(2):77-89. doi:10.33205/cma.1454113
Chicago Bukhsh, Khizra, Awais Younus, Aiman Mukheimer, and Thabet Abdeljawad. “Fractional Proportional Linear Control Systems: A Geometric Perspective on Controllability and Observability”. Constructive Mathematical Analysis 7, no. 2 (June 2024): 77-89. https://doi.org/10.33205/cma.1454113.
EndNote Bukhsh K, Younus A, Mukheimer A, Abdeljawad T (June 1, 2024) Fractional proportional linear control systems: A geometric perspective on controllability and observability. Constructive Mathematical Analysis 7 2 77–89.
IEEE K. Bukhsh, A. Younus, A. Mukheimer, and T. Abdeljawad, “Fractional proportional linear control systems: A geometric perspective on controllability and observability”, CMA, vol. 7, no. 2, pp. 77–89, 2024, doi: 10.33205/cma.1454113.
ISNAD Bukhsh, Khizra et al. “Fractional Proportional Linear Control Systems: A Geometric Perspective on Controllability and Observability”. Constructive Mathematical Analysis 7/2 (June 2024), 77-89. https://doi.org/10.33205/cma.1454113.
JAMA Bukhsh K, Younus A, Mukheimer A, Abdeljawad T. Fractional proportional linear control systems: A geometric perspective on controllability and observability. CMA. 2024;7:77–89.
MLA Bukhsh, Khizra et al. “Fractional Proportional Linear Control Systems: A Geometric Perspective on Controllability and Observability”. Constructive Mathematical Analysis, vol. 7, no. 2, 2024, pp. 77-89, doi:10.33205/cma.1454113.
Vancouver Bukhsh K, Younus A, Mukheimer A, Abdeljawad T. Fractional proportional linear control systems: A geometric perspective on controllability and observability. CMA. 2024;7(2):77-89.