Year 2024,
, 98 - 113, 15.09.2024
Antonio Jiménez Vargas
,
David Ruiz Casternado
References
- D. Achour, P. Rueda, A. Sánchez-Pérez and R. Yahi: Lipschitz operator ideals and the approximation property, J. Math. Anal. Appl., 436 (1) (2016), 217–236.
- J. M. Anderson: Bloch functions: the basic theory. Operators and function theory, (Lancaster, 1984), 1–17, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 153, Reidel, Dordrecht (1985).
- J. Arazy, S. D. Fisher and J. Peetre: Möbius invariant function spaces, J. Reine Angew. Math., 363 (1985), 110–145.
- R. Aron, G. Botelho, D. Pellegrino and P. Rueda: Holomorphic mappings associated to composition ideals of polynomials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21 (3) (2010), 261–274.
- A. Belaada, K. Saadi and A. Tiaiba: On the composition ideals of Schatten class type mappings, J. Math., (2016), Article ID: 3492934.
- G. Botelho, E. Çali¸skan and G. Moraes: The polynomial dual of an operator ideal, Monatsh Math., 173 (2014), 161–174.
- G. Botelho, D. Pellegrino and P. Rueda: On composition ideals of multilinear mappings and homogeneous polynomials, Publ. Res. Inst. Math. Sci., 43 (4) (2007), 1139–1155.
- M. G. Cabrera-Padilla, A. Jiménez-Vargas and D. Ruiz-Casternado: On composition ideals and dual ideals of bounded holomorphic mappings, Results Math., 78 (3) (2023), Paper No. 103, 21 pp.
- M. G. Cabrera-Padilla, A. Jiménez-Vargas and D. Ruiz-Casternado: p-Summing Bloch mappings on the complex unit disc, Banach J. Math. Anal., 18 (9) (2024), https://doi.org/10.1007/s43037-023-00318-6.
- J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators, Cambridge Studies in Adv. Math, vol. 43,
Cambridge Univ. Press, Cambridge (1995).
- K. Floret, D. García: On ideals of polynomials and multilinear mappings between Banach spaces, Arch. Math. (Basel), 81 (3) (2003), 300–308.
- M. González, J. M. Gutiérrez: Surjective factorization of holomorphic mappings, Comment. Math. Univ. Carolin., 41 (3) (2000), 469–476.
- A. Jiménez-Vargas, D. Ruiz-Casternado: Compact Bloch mappings on the complex unit disc, http://arxiv.org/abs/2308.02461.
- A. Persson, A. Pietsch: p-nuklear and p-integrale Abbildungen in Banach raümen, Studia. Math., 33 (1969), 19–62.
- A. Pietsch: Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co.,
Amsterdam-New York, (1980). Translated from German by the author.
- A. Pietsch: Ideals of multilinear functionals (designs of a theory), in: Proc. Second Int. Conf. on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Teubner-Texte Math. 67, Leipzig, (1983), 185–199.
- T. Quang: Banach-valued Bloch-type functions on the unit ball of a Hilbert space and weak spaces of Bloch-type, Constr. Math. Anal., 6 (1) (2023), 6–21. https://doi.org/10.33205/cma.1243686
- K. Saadi: On the composition ideals of Lipschitz mappings, Banach. J. Math. Anal., 11 (4) (2017), 825–840.
New ideals of Bloch mappings which are I-factorizable and Möbius-invariant
Year 2024,
, 98 - 113, 15.09.2024
Antonio Jiménez Vargas
,
David Ruiz Casternado
Abstract
In this paper, we introduce an unified method for generating ideals of Möbius-invariant Banach-valued Bloch mappings on the complex open unit disc $\D$, through the composition with the members of a Banach operator ideal $\I$. Using linearisation of derivatives of Banach-valued normalized Bloch mappings on $\D$, this composition method yields the so-called ideals of $\I$-factorizable normalized Bloch mappings $\I\circ\hat{\B}$, where $\hat{\B}$ denotes the class of normalized Bloch mappings on $\D$. We present new examples of them as ideals of separable (Rosenthal, Asplund) normalized Bloch mappings and $p$-integral (strictly $p$-integral, $p$-nuclear) normalized Bloch mappings for any $p\in[1,\infty)$. Moreover, the Bloch dual ideal $\I^{\hat{\B}\text{-}\d}$ of an operator ideal $\I$ is introduced and shown that it coincides with the composition ideal $\I^\d\circ\hat{\B}$.
Ethical Statement
This is an original paper and we cite all the necessary references.
Supporting Institution
This research has been supported in part by grant PID2021-122126NB-C31 funded by MCIN/AEI/ 10.13039/501100011033 and by ``ERDF A way of making Europe'', and by Junta de Andalucía grant FQM194.
References
- D. Achour, P. Rueda, A. Sánchez-Pérez and R. Yahi: Lipschitz operator ideals and the approximation property, J. Math. Anal. Appl., 436 (1) (2016), 217–236.
- J. M. Anderson: Bloch functions: the basic theory. Operators and function theory, (Lancaster, 1984), 1–17, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 153, Reidel, Dordrecht (1985).
- J. Arazy, S. D. Fisher and J. Peetre: Möbius invariant function spaces, J. Reine Angew. Math., 363 (1985), 110–145.
- R. Aron, G. Botelho, D. Pellegrino and P. Rueda: Holomorphic mappings associated to composition ideals of polynomials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21 (3) (2010), 261–274.
- A. Belaada, K. Saadi and A. Tiaiba: On the composition ideals of Schatten class type mappings, J. Math., (2016), Article ID: 3492934.
- G. Botelho, E. Çali¸skan and G. Moraes: The polynomial dual of an operator ideal, Monatsh Math., 173 (2014), 161–174.
- G. Botelho, D. Pellegrino and P. Rueda: On composition ideals of multilinear mappings and homogeneous polynomials, Publ. Res. Inst. Math. Sci., 43 (4) (2007), 1139–1155.
- M. G. Cabrera-Padilla, A. Jiménez-Vargas and D. Ruiz-Casternado: On composition ideals and dual ideals of bounded holomorphic mappings, Results Math., 78 (3) (2023), Paper No. 103, 21 pp.
- M. G. Cabrera-Padilla, A. Jiménez-Vargas and D. Ruiz-Casternado: p-Summing Bloch mappings on the complex unit disc, Banach J. Math. Anal., 18 (9) (2024), https://doi.org/10.1007/s43037-023-00318-6.
- J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators, Cambridge Studies in Adv. Math, vol. 43,
Cambridge Univ. Press, Cambridge (1995).
- K. Floret, D. García: On ideals of polynomials and multilinear mappings between Banach spaces, Arch. Math. (Basel), 81 (3) (2003), 300–308.
- M. González, J. M. Gutiérrez: Surjective factorization of holomorphic mappings, Comment. Math. Univ. Carolin., 41 (3) (2000), 469–476.
- A. Jiménez-Vargas, D. Ruiz-Casternado: Compact Bloch mappings on the complex unit disc, http://arxiv.org/abs/2308.02461.
- A. Persson, A. Pietsch: p-nuklear and p-integrale Abbildungen in Banach raümen, Studia. Math., 33 (1969), 19–62.
- A. Pietsch: Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co.,
Amsterdam-New York, (1980). Translated from German by the author.
- A. Pietsch: Ideals of multilinear functionals (designs of a theory), in: Proc. Second Int. Conf. on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Teubner-Texte Math. 67, Leipzig, (1983), 185–199.
- T. Quang: Banach-valued Bloch-type functions on the unit ball of a Hilbert space and weak spaces of Bloch-type, Constr. Math. Anal., 6 (1) (2023), 6–21. https://doi.org/10.33205/cma.1243686
- K. Saadi: On the composition ideals of Lipschitz mappings, Banach. J. Math. Anal., 11 (4) (2017), 825–840.