Research Article
BibTex RIS Cite

Approximation of Modified Jakimovski-Leviatan-Beta Type Operators

Year 2018, , 88 - 98, 07.11.2018
https://doi.org/10.33205/cma.453284

Abstract

In the present paper, we define Jakimovski-Leviatan type modified operators. We study some approximation results for these operators. We also determine the order of convergence in terms of modulus of continuity, Lipschitz functions, Peetre's K-functional, second order modulus of continuity and weighted modulus of continuity.

References

  • [1] T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput., 263 (2015) 223– 239.
  • [2] A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babe¸s-Bolyai, Math., 40 (1995) 39–47.
  • [3] W. A. Al-Salam, q-Appell polynomials. Ann. Mat. Pura Appl., 4 (1967) 31–45.
  • [4] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880) 119–144.
  • [5] A. Aral, T. Acar, Weighted approximation by new Bernstein-Chlodowsky- Gadjiev operators, Filomat, 27 (2013) 371–380.
  • [6] C. Atakut, I. Büyükyazici, Approximation by modified integral type Jakimovski-Leviatan operators, Filomat, 30 (2016) 29–39.
  • [7] İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, C. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan operators, Jour. Comput. Appl. Math., 259 (2014) 153–163.
  • [8] J. Choi, H.M. Srivastava, q-Extensions of a multivariable and multiparameter generalization of the Gottlieb polynomials in several variables, Tokyo J. Math., 37 (2014) 111–125.
  • [9] A. D. Gadzhiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR (Russian), 218 (1974) 1001–1004.
  • [10] A. D. Gadzhiev, Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz.-Tehn. Mat. Nauk (Russian), 5 (1975) 41–45.
  • [11] P. Gupta, P. N. Agarwal, Jakimovski-Leviatan operators of Durrmeyer type involving involving Appell polynomials, Turk J. Math., 42 (2018) 1457–1470.
  • [12] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15) (1910) 193–203.
  • [13] A. Jakimovski, D. Leviatan, Generalized Szasz operators for the approximation in the infinite interval. Mathematica (Cluj), 11 (34) (1969) 97-103.
  • [14] V. Kac., A. De Sole, On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei, 9 (200) 11–29.
  • [15] M. E. Keleshteri, N.I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comp., 260 (2015) 351–369.
  • [16] P. P. Korovkin, Linear Operators And Approximation Theory, Hindustan Publ. Co. Delhi, 1960.
  • [17] G. V. Milovanovic, M. Mursaleen., M. Nasiruzzaman, Modified Stancu type Dunkl generalization of Szász- Kantorovich operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 112(1) (2018) 135–151.
  • [18] M. Mursaleen, K.J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. 41 (2017) 891–900.
  • [19] A. Wafi, N. Rao, D. Rai, Appproximation properties by generalized-Baskakov-Kantrovich-Stancu type operators, Appl. Math. Inform. Sci. Lett., 4 (2016) 111–118.
  • [20] B. Wood, Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math., 17 (1969) 790-801.
Year 2018, , 88 - 98, 07.11.2018
https://doi.org/10.33205/cma.453284

Abstract

References

  • [1] T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput., 263 (2015) 223– 239.
  • [2] A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babe¸s-Bolyai, Math., 40 (1995) 39–47.
  • [3] W. A. Al-Salam, q-Appell polynomials. Ann. Mat. Pura Appl., 4 (1967) 31–45.
  • [4] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880) 119–144.
  • [5] A. Aral, T. Acar, Weighted approximation by new Bernstein-Chlodowsky- Gadjiev operators, Filomat, 27 (2013) 371–380.
  • [6] C. Atakut, I. Büyükyazici, Approximation by modified integral type Jakimovski-Leviatan operators, Filomat, 30 (2016) 29–39.
  • [7] İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, C. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan operators, Jour. Comput. Appl. Math., 259 (2014) 153–163.
  • [8] J. Choi, H.M. Srivastava, q-Extensions of a multivariable and multiparameter generalization of the Gottlieb polynomials in several variables, Tokyo J. Math., 37 (2014) 111–125.
  • [9] A. D. Gadzhiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR (Russian), 218 (1974) 1001–1004.
  • [10] A. D. Gadzhiev, Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz.-Tehn. Mat. Nauk (Russian), 5 (1975) 41–45.
  • [11] P. Gupta, P. N. Agarwal, Jakimovski-Leviatan operators of Durrmeyer type involving involving Appell polynomials, Turk J. Math., 42 (2018) 1457–1470.
  • [12] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15) (1910) 193–203.
  • [13] A. Jakimovski, D. Leviatan, Generalized Szasz operators for the approximation in the infinite interval. Mathematica (Cluj), 11 (34) (1969) 97-103.
  • [14] V. Kac., A. De Sole, On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei, 9 (200) 11–29.
  • [15] M. E. Keleshteri, N.I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comp., 260 (2015) 351–369.
  • [16] P. P. Korovkin, Linear Operators And Approximation Theory, Hindustan Publ. Co. Delhi, 1960.
  • [17] G. V. Milovanovic, M. Mursaleen., M. Nasiruzzaman, Modified Stancu type Dunkl generalization of Szász- Kantorovich operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 112(1) (2018) 135–151.
  • [18] M. Mursaleen, K.J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. 41 (2017) 891–900.
  • [19] A. Wafi, N. Rao, D. Rai, Appproximation properties by generalized-Baskakov-Kantrovich-Stancu type operators, Appl. Math. Inform. Sci. Lett., 4 (2016) 111–118.
  • [20] B. Wood, Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math., 17 (1969) 790-801.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohammad Mursaleen 0000-0003-4128-0427

Mohammad Nasıruzzaman

Publication Date November 7, 2018
Published in Issue Year 2018

Cite

APA Mursaleen, M., & Nasıruzzaman, M. (2018). Approximation of Modified Jakimovski-Leviatan-Beta Type Operators. Constructive Mathematical Analysis, 1(2), 88-98. https://doi.org/10.33205/cma.453284
AMA Mursaleen M, Nasıruzzaman M. Approximation of Modified Jakimovski-Leviatan-Beta Type Operators. CMA. November 2018;1(2):88-98. doi:10.33205/cma.453284
Chicago Mursaleen, Mohammad, and Mohammad Nasıruzzaman. “Approximation of Modified Jakimovski-Leviatan-Beta Type Operators”. Constructive Mathematical Analysis 1, no. 2 (November 2018): 88-98. https://doi.org/10.33205/cma.453284.
EndNote Mursaleen M, Nasıruzzaman M (November 1, 2018) Approximation of Modified Jakimovski-Leviatan-Beta Type Operators. Constructive Mathematical Analysis 1 2 88–98.
IEEE M. Mursaleen and M. Nasıruzzaman, “Approximation of Modified Jakimovski-Leviatan-Beta Type Operators”, CMA, vol. 1, no. 2, pp. 88–98, 2018, doi: 10.33205/cma.453284.
ISNAD Mursaleen, Mohammad - Nasıruzzaman, Mohammad. “Approximation of Modified Jakimovski-Leviatan-Beta Type Operators”. Constructive Mathematical Analysis 1/2 (November 2018), 88-98. https://doi.org/10.33205/cma.453284.
JAMA Mursaleen M, Nasıruzzaman M. Approximation of Modified Jakimovski-Leviatan-Beta Type Operators. CMA. 2018;1:88–98.
MLA Mursaleen, Mohammad and Mohammad Nasıruzzaman. “Approximation of Modified Jakimovski-Leviatan-Beta Type Operators”. Constructive Mathematical Analysis, vol. 1, no. 2, 2018, pp. 88-98, doi:10.33205/cma.453284.
Vancouver Mursaleen M, Nasıruzzaman M. Approximation of Modified Jakimovski-Leviatan-Beta Type Operators. CMA. 2018;1(2):88-9.