Approximation of Modified Jakimovski-Leviatan-Beta Type Operators
Year 2018,
, 88 - 98, 07.11.2018
Mohammad Mursaleen
,
Mohammad Nasıruzzaman
Abstract
In the present paper, we define Jakimovski-Leviatan type modified operators. We study some approximation results for these operators. We also determine the order of convergence in terms of modulus of continuity, Lipschitz functions, Peetre's K-functional, second order modulus of continuity and weighted modulus of continuity.
References
- [1] T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput., 263 (2015) 223–
239.
- [2] A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babe¸s-Bolyai, Math., 40 (1995) 39–47.
- [3] W. A. Al-Salam, q-Appell polynomials. Ann. Mat. Pura Appl., 4 (1967) 31–45.
- [4] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880) 119–144.
- [5] A. Aral, T. Acar, Weighted approximation by new Bernstein-Chlodowsky- Gadjiev operators, Filomat, 27 (2013)
371–380.
- [6] C. Atakut, I. Büyükyazici, Approximation by modified integral type Jakimovski-Leviatan operators, Filomat, 30
(2016) 29–39.
- [7] İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, C. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan
operators, Jour. Comput. Appl. Math., 259 (2014) 153–163.
- [8] J. Choi, H.M. Srivastava, q-Extensions of a multivariable and multiparameter generalization of the Gottlieb polynomials
in several variables, Tokyo J. Math., 37 (2014) 111–125.
- [9] A. D. Gadzhiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and
theorems that are analogous to P. P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR (Russian), 218 (1974) 1001–1004.
- [10] A. D. Gadzhiev, Weighted approximation of continuous functions by positive linear operators on the whole real
axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz.-Tehn. Mat. Nauk (Russian), 5 (1975) 41–45.
- [11] P. Gupta, P. N. Agarwal, Jakimovski-Leviatan operators of Durrmeyer type involving involving Appell polynomials,
Turk J. Math., 42 (2018) 1457–1470.
- [12] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15) (1910) 193–203.
- [13] A. Jakimovski, D. Leviatan, Generalized Szasz operators for the approximation in the infinite interval. Mathematica
(Cluj), 11 (34) (1969) 97-103.
- [14] V. Kac., A. De Sole, On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei, 9 (200)
11–29.
- [15] M. E. Keleshteri, N.I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math.
Comp., 260 (2015) 351–369.
- [16] P. P. Korovkin, Linear Operators And Approximation Theory, Hindustan Publ. Co. Delhi, 1960.
- [17] G. V. Milovanovic, M. Mursaleen., M. Nasiruzzaman, Modified Stancu type Dunkl generalization of Szász-
Kantorovich operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 112(1) (2018) 135–151.
- [18] M. Mursaleen, K.J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of Jakimovski-Leviatan operators
involving q-Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. 41 (2017) 891–900.
- [19] A. Wafi, N. Rao, D. Rai, Appproximation properties by generalized-Baskakov-Kantrovich-Stancu type operators,
Appl. Math. Inform. Sci. Lett., 4 (2016) 111–118.
- [20] B. Wood, Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math., 17
(1969) 790-801.
Year 2018,
, 88 - 98, 07.11.2018
Mohammad Mursaleen
,
Mohammad Nasıruzzaman
References
- [1] T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput., 263 (2015) 223–
239.
- [2] A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babe¸s-Bolyai, Math., 40 (1995) 39–47.
- [3] W. A. Al-Salam, q-Appell polynomials. Ann. Mat. Pura Appl., 4 (1967) 31–45.
- [4] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880) 119–144.
- [5] A. Aral, T. Acar, Weighted approximation by new Bernstein-Chlodowsky- Gadjiev operators, Filomat, 27 (2013)
371–380.
- [6] C. Atakut, I. Büyükyazici, Approximation by modified integral type Jakimovski-Leviatan operators, Filomat, 30
(2016) 29–39.
- [7] İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, C. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan
operators, Jour. Comput. Appl. Math., 259 (2014) 153–163.
- [8] J. Choi, H.M. Srivastava, q-Extensions of a multivariable and multiparameter generalization of the Gottlieb polynomials
in several variables, Tokyo J. Math., 37 (2014) 111–125.
- [9] A. D. Gadzhiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and
theorems that are analogous to P. P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR (Russian), 218 (1974) 1001–1004.
- [10] A. D. Gadzhiev, Weighted approximation of continuous functions by positive linear operators on the whole real
axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz.-Tehn. Mat. Nauk (Russian), 5 (1975) 41–45.
- [11] P. Gupta, P. N. Agarwal, Jakimovski-Leviatan operators of Durrmeyer type involving involving Appell polynomials,
Turk J. Math., 42 (2018) 1457–1470.
- [12] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15) (1910) 193–203.
- [13] A. Jakimovski, D. Leviatan, Generalized Szasz operators for the approximation in the infinite interval. Mathematica
(Cluj), 11 (34) (1969) 97-103.
- [14] V. Kac., A. De Sole, On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei, 9 (200)
11–29.
- [15] M. E. Keleshteri, N.I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math.
Comp., 260 (2015) 351–369.
- [16] P. P. Korovkin, Linear Operators And Approximation Theory, Hindustan Publ. Co. Delhi, 1960.
- [17] G. V. Milovanovic, M. Mursaleen., M. Nasiruzzaman, Modified Stancu type Dunkl generalization of Szász-
Kantorovich operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 112(1) (2018) 135–151.
- [18] M. Mursaleen, K.J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of Jakimovski-Leviatan operators
involving q-Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. 41 (2017) 891–900.
- [19] A. Wafi, N. Rao, D. Rai, Appproximation properties by generalized-Baskakov-Kantrovich-Stancu type operators,
Appl. Math. Inform. Sci. Lett., 4 (2016) 111–118.
- [20] B. Wood, Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math., 17
(1969) 790-801.