Research Article
BibTex RIS Cite
Year 2019, , 103 - 108, 01.09.2019
https://doi.org/10.33205/cma.544094

Abstract

References

  • [1] F.Altomare,M.CappellettiMontano,V.Leonessa,I.Ras ̧a,MarkovOperators,PositiveSemigroupsandApproximation Processes, De Gruyter Studies in Mathematics, Vol. 61, Berlin, 2014.
  • [2] G. A. Anastassiou, Moments in probability and approximation theory, Pitman Research Notes in Mathematics Series, Vol. 287, Longman Scientific & Technical, England, 1993.
  • [3] G. A. Anastassiou, S.G. Gal, On some differential shift-invariant integral operators, univariate case revisited, Adv. Non- linear Var. Inequal., 2(1999), no. 2, 71-83.
  • [4] G. A. Anastassiou, S.G. Gal, On some differential shift-invariant integral operators, univariate case revisited, Adv. Non- linear Var. Inequal., 2(1999), no. 2, 97-109.
  • [5] G. A. Anastassiou, S.G. Gal, On some shift invariant multivariate, integral operators revisited, Commun. Appl. Anal., 5(2001), no. 2, 265-275.
  • [6] G. A. Anastassiou, H.H. Gonska, On some shift invariant integral operators, univariate case, Annales Polonici Mathe- matici, LXI(3)(1995), 225-243.
  • [7] W. Feller, An introduction to probability theory and its applications, Vol. I, II, John Wiley, New York, London, 1957 resp. 1966.
  • [8] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.
  • [9] D. D. Stancu, Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roum. Math. Pures et Appl., Tome 14(5)(1969), 673-691.

Shift $\lambda $-Invariant Operators

Year 2019, , 103 - 108, 01.09.2019
https://doi.org/10.33205/cma.544094

Abstract

The present note is devoted to a generalization of the notion of shift invariant operators that we call it $\lambda $-invariant operators $(\lambda \ge 0)$. Some properties of this new class are presented. By using probabilistic methods, three examples are delivered.

References

  • [1] F.Altomare,M.CappellettiMontano,V.Leonessa,I.Ras ̧a,MarkovOperators,PositiveSemigroupsandApproximation Processes, De Gruyter Studies in Mathematics, Vol. 61, Berlin, 2014.
  • [2] G. A. Anastassiou, Moments in probability and approximation theory, Pitman Research Notes in Mathematics Series, Vol. 287, Longman Scientific & Technical, England, 1993.
  • [3] G. A. Anastassiou, S.G. Gal, On some differential shift-invariant integral operators, univariate case revisited, Adv. Non- linear Var. Inequal., 2(1999), no. 2, 71-83.
  • [4] G. A. Anastassiou, S.G. Gal, On some differential shift-invariant integral operators, univariate case revisited, Adv. Non- linear Var. Inequal., 2(1999), no. 2, 97-109.
  • [5] G. A. Anastassiou, S.G. Gal, On some shift invariant multivariate, integral operators revisited, Commun. Appl. Anal., 5(2001), no. 2, 265-275.
  • [6] G. A. Anastassiou, H.H. Gonska, On some shift invariant integral operators, univariate case, Annales Polonici Mathe- matici, LXI(3)(1995), 225-243.
  • [7] W. Feller, An introduction to probability theory and its applications, Vol. I, II, John Wiley, New York, London, 1957 resp. 1966.
  • [8] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.
  • [9] D. D. Stancu, Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roum. Math. Pures et Appl., Tome 14(5)(1969), 673-691.
There are 9 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Articles
Authors

Octavian Agratını 0000-0002-2406-4274

Publication Date September 1, 2019
Published in Issue Year 2019

Cite

APA Agratını, O. (2019). Shift $\lambda $-Invariant Operators. Constructive Mathematical Analysis, 2(3), 103-108. https://doi.org/10.33205/cma.544094
AMA Agratını O. Shift $\lambda $-Invariant Operators. CMA. September 2019;2(3):103-108. doi:10.33205/cma.544094
Chicago Agratını, Octavian. “Shift $\lambda $-Invariant Operators”. Constructive Mathematical Analysis 2, no. 3 (September 2019): 103-8. https://doi.org/10.33205/cma.544094.
EndNote Agratını O (September 1, 2019) Shift $\lambda $-Invariant Operators. Constructive Mathematical Analysis 2 3 103–108.
IEEE O. Agratını, “Shift $\lambda $-Invariant Operators”, CMA, vol. 2, no. 3, pp. 103–108, 2019, doi: 10.33205/cma.544094.
ISNAD Agratını, Octavian. “Shift $\lambda $-Invariant Operators”. Constructive Mathematical Analysis 2/3 (September 2019), 103-108. https://doi.org/10.33205/cma.544094.
JAMA Agratını O. Shift $\lambda $-Invariant Operators. CMA. 2019;2:103–108.
MLA Agratını, Octavian. “Shift $\lambda $-Invariant Operators”. Constructive Mathematical Analysis, vol. 2, no. 3, 2019, pp. 103-8, doi:10.33205/cma.544094.
Vancouver Agratını O. Shift $\lambda $-Invariant Operators. CMA. 2019;2(3):103-8.