Research Article
BibTex RIS Cite

Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems

Year 2020, , 178 - 188, 01.12.2020
https://doi.org/10.33205/cma.796813

Abstract

In this paper, we consider the periodic solutions of the following non-autonomous second order
discrete Hamiltonian system
$$\Delta^{2}u(n-1)=\nabla F(n,u(n)), \quad n\in\mathbb{Z}.$$
When the nonlinear function $F(n,x)$ is like-quadratic for $x$, we obtain some existence and multiplicity results under twisting conditions by using the least action principle and a multiple critical point theorem. The methods and main ideas using in this paper are variational method and critical point theory. The twisting conditions in our results are different from that in the lituratures.

References

  • H. Brezis, L. Nirenberg, {\it Remarks on finding critical points}, Commun. Pure Appl. Math., 1991, 44(8-9):939-963.
  • Z.M. Guo and J.S. Yu, {\it Existence of periodic and subharmonic solutions for second-order superlinear difference equations}, Sci. China Ser. A, 2003, 46(4): 506-515.
  • Z.M. Guo and J.S. Yu, {\it The existence of periodic and subharmonic solutions to subquadratic second-order difference equations}, J. Lond. Math. Soc., 2003, 68(2):419-430.
  • Z.M. Guo and J.S. Yu, {\it Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems}, Nonlinear Anal., 2003, 55(7-8):969-983.
  • W. Guan and K. Yang, {\it Existence of periodic solutions for a class of second order discrete Hamiltonian systems}, Adv. Difference Equ., 2016, (68).
  • J. Hu, {\it Existence and Multiplicity of Periodic Solutions for Second-order Discete Hamiltonian Systems}, J. Harbin Univ. Sci. Tech., 2010, 15(05):119-123.
  • J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, {\it Springer-Verlag, New York}, 1989.
  • X. H. Tang and X.Y. Zhang, {\it Periodic solutions for second-order discrete Hamiltonian systems}, J. Difference Equ. Appl, 2011, 17(10):1413-1430.
  • Y.F. Xue and C.L. Tang, {\it Existence and Multiplicity of Periodic Solutions for Second-Order Discrete Hamiltonian Systems}, J. Southwest China Normal Univ. Nat. Sci. Ed., 2006, 31(1):7-12.
  • Y.F. Xue and C.L. Tang, {\it Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems}, Appl. Math. Comput., 2008, 196(2):494-500.
  • Z. Zhou, J.S. Yu and Z.M. Guo, {\it Periodic solutions of higher-dimensional discrete systems}, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(5):1013-1022.
Year 2020, , 178 - 188, 01.12.2020
https://doi.org/10.33205/cma.796813

Abstract

References

  • H. Brezis, L. Nirenberg, {\it Remarks on finding critical points}, Commun. Pure Appl. Math., 1991, 44(8-9):939-963.
  • Z.M. Guo and J.S. Yu, {\it Existence of periodic and subharmonic solutions for second-order superlinear difference equations}, Sci. China Ser. A, 2003, 46(4): 506-515.
  • Z.M. Guo and J.S. Yu, {\it The existence of periodic and subharmonic solutions to subquadratic second-order difference equations}, J. Lond. Math. Soc., 2003, 68(2):419-430.
  • Z.M. Guo and J.S. Yu, {\it Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems}, Nonlinear Anal., 2003, 55(7-8):969-983.
  • W. Guan and K. Yang, {\it Existence of periodic solutions for a class of second order discrete Hamiltonian systems}, Adv. Difference Equ., 2016, (68).
  • J. Hu, {\it Existence and Multiplicity of Periodic Solutions for Second-order Discete Hamiltonian Systems}, J. Harbin Univ. Sci. Tech., 2010, 15(05):119-123.
  • J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, {\it Springer-Verlag, New York}, 1989.
  • X. H. Tang and X.Y. Zhang, {\it Periodic solutions for second-order discrete Hamiltonian systems}, J. Difference Equ. Appl, 2011, 17(10):1413-1430.
  • Y.F. Xue and C.L. Tang, {\it Existence and Multiplicity of Periodic Solutions for Second-Order Discrete Hamiltonian Systems}, J. Southwest China Normal Univ. Nat. Sci. Ed., 2006, 31(1):7-12.
  • Y.F. Xue and C.L. Tang, {\it Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems}, Appl. Math. Comput., 2008, 196(2):494-500.
  • Z. Zhou, J.S. Yu and Z.M. Guo, {\it Periodic solutions of higher-dimensional discrete systems}, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(5):1013-1022.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Chungen Lıu 0000-0001-7240-7377

Yuyou Zhong This is me 0000-0002-6885-1747

Publication Date December 1, 2020
Published in Issue Year 2020

Cite

APA Lıu, C., & Zhong, Y. (2020). Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems. Constructive Mathematical Analysis, 3(4), 178-188. https://doi.org/10.33205/cma.796813
AMA Lıu C, Zhong Y. Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems. CMA. December 2020;3(4):178-188. doi:10.33205/cma.796813
Chicago Lıu, Chungen, and Yuyou Zhong. “Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems”. Constructive Mathematical Analysis 3, no. 4 (December 2020): 178-88. https://doi.org/10.33205/cma.796813.
EndNote Lıu C, Zhong Y (December 1, 2020) Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems. Constructive Mathematical Analysis 3 4 178–188.
IEEE C. Lıu and Y. Zhong, “Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems”, CMA, vol. 3, no. 4, pp. 178–188, 2020, doi: 10.33205/cma.796813.
ISNAD Lıu, Chungen - Zhong, Yuyou. “Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems”. Constructive Mathematical Analysis 3/4 (December 2020), 178-188. https://doi.org/10.33205/cma.796813.
JAMA Lıu C, Zhong Y. Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems. CMA. 2020;3:178–188.
MLA Lıu, Chungen and Yuyou Zhong. “Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems”. Constructive Mathematical Analysis, vol. 3, no. 4, 2020, pp. 178-8, doi:10.33205/cma.796813.
Vancouver Lıu C, Zhong Y. Existence and Multiplicity of Periodic Solutions for Nonautonomous Second-Order Discrete Hamiltonian Systems. CMA. 2020;3(4):178-8.