Research Article
BibTex RIS Cite
Year 2021, , 104 - 118, 01.03.2021
https://doi.org/10.33205/cma.835582

Abstract

References

  • S. T. Ali, J. P. Antoine and J. P. Gazeau: Continuous Frames in Hilbert Space, Ann. Physics, 222 (1993), 1–37.
  • J-P. Antoine, C. Trapani: Partial Inner Product Spaces: Theory and Applications, Lecture Notes in Mathematics, vol. 1986, Springer, Berlin (2009).
  • J-P. Antoine, P. Balazs: Frames and semi-frames, J. Phys. A: Math. Theor., 44 (2011), 205201.
  • J-P. Antoine, C. Trapani: Partial inner product spaces, metric operators and generalized hermiticity, J. Phys. A: Math. Theor., 46 (2013), 025204; Corrigendum, ibid. 46 (2013), 329501.
  • J-P. Antoine, C. Trapani: Operator (quasi-)similarity, quasi-Hermitian operators and all that, Non-Hermitian Hamiltonians in Quantum Physics, pp. 45–65; F.Bagarello, R. Passante , C.Trapani, (eds.), Springer Proceedings in Physics, vol. 184, Springer Int. Publ. Switzerland (2016).
  • J-P. Antoine, C. Trapani: Reproducing pairs of measurable functions and partial inner product spaces, Adv. Operator Th., 2 (2017), 126–146.
  • J-P. Antoine, C. Trapani: Beyond frames: Semi-frames and reproducing pairs, Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, T. Diagana, B. Toni (eds), Springer, Cham (2018).
  • J-P. Antoine, R. Corso and C. Trapani: Lower semi-frames and metric operators, Mediterranean J. Math., 18 (2021), 11.
  • P. Balazs, J-P. Antoine and A. Gryboś: Weighted and controlled frames: Mutual relationship and first numerical properties, Int. J. Wavelets, Multires. and Inform. Proc., 8 (2010), 109–132.
  • G. Bellomonte: Continuous frames for unbounded operators, arXiv:1912.13097 [math.FA], submitted.
  • G. Bellomonte, R. Corso: Frames and weak frames for unbounded operators, Advances in Computational Mathematics, 46 (2020), art. n. 38, 21 pp.
  • J. Bergh, J. Löfström: Interpolation Spaces. Springer, Berlin (1976).
  • R. Corso: Sesquilinear forms associated to sequences on Hilbert spaces, Monatsh. Math., 189 (2019), 625–650.
  • L. Gâvruţa: Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139–144.
  • G. Kaiser:A Friendly Guide to Wavelets, Birkhäuser, Boston (1994).
  • T. Kato: Perturbation Theory for Linear Operators, Springer, New York (1966).
  • W. Rudin: Functional Analysis, McGraw-Hill , New York-Düsseldorf-Johannesburg (1973).
  • K. Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht (2012).
  • A.A. Zakharova: On the properties of generalized frames, Math. Notes, 83 (2008), 190–200.

Weak $A$-frames and weak $A$-semi-frames

Year 2021, , 104 - 118, 01.03.2021
https://doi.org/10.33205/cma.835582

Abstract

After reviewing the interplay between frames and lower semi-frames, we introduce the notion of lower semi-frame controlled by a densely defined operator $A$ or, for short, a weak lower $A$-semi-frame and we study its properties. In particular, we compare it with that of lower atomic systems, introduced in (GB). We discuss duality properties and we suggest several possible definitions for weak $A$-upper semi-frames. Concrete examples are presented.

References

  • S. T. Ali, J. P. Antoine and J. P. Gazeau: Continuous Frames in Hilbert Space, Ann. Physics, 222 (1993), 1–37.
  • J-P. Antoine, C. Trapani: Partial Inner Product Spaces: Theory and Applications, Lecture Notes in Mathematics, vol. 1986, Springer, Berlin (2009).
  • J-P. Antoine, P. Balazs: Frames and semi-frames, J. Phys. A: Math. Theor., 44 (2011), 205201.
  • J-P. Antoine, C. Trapani: Partial inner product spaces, metric operators and generalized hermiticity, J. Phys. A: Math. Theor., 46 (2013), 025204; Corrigendum, ibid. 46 (2013), 329501.
  • J-P. Antoine, C. Trapani: Operator (quasi-)similarity, quasi-Hermitian operators and all that, Non-Hermitian Hamiltonians in Quantum Physics, pp. 45–65; F.Bagarello, R. Passante , C.Trapani, (eds.), Springer Proceedings in Physics, vol. 184, Springer Int. Publ. Switzerland (2016).
  • J-P. Antoine, C. Trapani: Reproducing pairs of measurable functions and partial inner product spaces, Adv. Operator Th., 2 (2017), 126–146.
  • J-P. Antoine, C. Trapani: Beyond frames: Semi-frames and reproducing pairs, Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, T. Diagana, B. Toni (eds), Springer, Cham (2018).
  • J-P. Antoine, R. Corso and C. Trapani: Lower semi-frames and metric operators, Mediterranean J. Math., 18 (2021), 11.
  • P. Balazs, J-P. Antoine and A. Gryboś: Weighted and controlled frames: Mutual relationship and first numerical properties, Int. J. Wavelets, Multires. and Inform. Proc., 8 (2010), 109–132.
  • G. Bellomonte: Continuous frames for unbounded operators, arXiv:1912.13097 [math.FA], submitted.
  • G. Bellomonte, R. Corso: Frames and weak frames for unbounded operators, Advances in Computational Mathematics, 46 (2020), art. n. 38, 21 pp.
  • J. Bergh, J. Löfström: Interpolation Spaces. Springer, Berlin (1976).
  • R. Corso: Sesquilinear forms associated to sequences on Hilbert spaces, Monatsh. Math., 189 (2019), 625–650.
  • L. Gâvruţa: Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139–144.
  • G. Kaiser:A Friendly Guide to Wavelets, Birkhäuser, Boston (1994).
  • T. Kato: Perturbation Theory for Linear Operators, Springer, New York (1966).
  • W. Rudin: Functional Analysis, McGraw-Hill , New York-Düsseldorf-Johannesburg (1973).
  • K. Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht (2012).
  • A.A. Zakharova: On the properties of generalized frames, Math. Notes, 83 (2008), 190–200.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Jean Pierre Antoıne 0000-0003-1242-5199

Giorgia Bellomonte 0000-0002-9506-3623

Camillo Trapanı This is me 0000-0001-9386-4403

Publication Date March 1, 2021
Published in Issue Year 2021

Cite

APA Antoıne, J. P., Bellomonte, G., & Trapanı, C. (2021). Weak $A$-frames and weak $A$-semi-frames. Constructive Mathematical Analysis, 4(1), 104-118. https://doi.org/10.33205/cma.835582
AMA Antoıne JP, Bellomonte G, Trapanı C. Weak $A$-frames and weak $A$-semi-frames. CMA. March 2021;4(1):104-118. doi:10.33205/cma.835582
Chicago Antoıne, Jean Pierre, Giorgia Bellomonte, and Camillo Trapanı. “Weak $A$-Frames and Weak $A$-Semi-Frames”. Constructive Mathematical Analysis 4, no. 1 (March 2021): 104-18. https://doi.org/10.33205/cma.835582.
EndNote Antoıne JP, Bellomonte G, Trapanı C (March 1, 2021) Weak $A$-frames and weak $A$-semi-frames. Constructive Mathematical Analysis 4 1 104–118.
IEEE J. P. Antoıne, G. Bellomonte, and C. Trapanı, “Weak $A$-frames and weak $A$-semi-frames”, CMA, vol. 4, no. 1, pp. 104–118, 2021, doi: 10.33205/cma.835582.
ISNAD Antoıne, Jean Pierre et al. “Weak $A$-Frames and Weak $A$-Semi-Frames”. Constructive Mathematical Analysis 4/1 (March 2021), 104-118. https://doi.org/10.33205/cma.835582.
JAMA Antoıne JP, Bellomonte G, Trapanı C. Weak $A$-frames and weak $A$-semi-frames. CMA. 2021;4:104–118.
MLA Antoıne, Jean Pierre et al. “Weak $A$-Frames and Weak $A$-Semi-Frames”. Constructive Mathematical Analysis, vol. 4, no. 1, 2021, pp. 104-18, doi:10.33205/cma.835582.
Vancouver Antoıne JP, Bellomonte G, Trapanı C. Weak $A$-frames and weak $A$-semi-frames. CMA. 2021;4(1):104-18.