Research Article
BibTex RIS Cite

Differences of Operators of Lupaş Type

Year 2018, Volume: 1 Issue: 1, 9 - 14, 15.09.2018
https://doi.org/10.33205/cma.452962

Abstract

In the present article, we study the approximation of difference of operators and find the quantitative estimates for the difference of Lupaş operators with Lupaş-Szász operators and Lupaş-Kantorovich operators in terms of modulus of continuity. Also, we find the quantitative estimate for the difference of Lupaş-Kantorovich operators and Lupaş-Szász operators.

References

  • [1] T. Acar: Asymptotic formulas for generalized Szász-–Mirakyan operators, Appl. Math. Comput. 263 (2015), 233-239.
  • [2] T. Acar, V. Gupta and A. Aral: Rate of convergence for generalized Szász operators, Bull. Math. Sci. 1 (1)(2011), 99–113.
  • [3] R. P. Agarwal and V. Gupta: On q-analogue of a complex summation-integral type operators in compact disks, J. Inequal. Appl. 2012 (1) (2012), Art. 111.
  • [4] A. Aral, V. Gupta and R. P. Agarwal: Applications of q Calculus in Operator Theory, Springer-Verlag, New York, 2013.
  • [5] A. M. Acu and I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms 73(2016), 775—789.
  • [6] O. Agratini: On a sequence of linear and positive operators, Facta Univ. (NIS) Ser. Math. Inform. 14 (1999), 41-–48.
  • [7] A. Aral, D. Inoan and I. Rasa: On differences of linear positive operators, Anal. Math. Phys.(2018). DOI https://doi.org/10.1007/s1332
  • [8] M. Bodur, O. G. Yılmaz and A. Aral: Approximation by Baskakov-Szász-Stancu operators preserving exponential functions, Const. Math. Anal. 1 (1) (2018), 1–8.
  • [9] N. Deo: Faster rate of convergence on Srivastava—Gupta operators, Appl. Math. Comput. 218 (21)(2012), 10486–10491.
  • [10] S. G. Gal and V. Gupta: Quantitative estimates for a new complex Durrmeyer operator in compact disks, Appl. Math. Comput. 218 (6) (2011), 2944–2951.
  • [11] V. Gupta: On difference of operators with applications to Szász type operators, communicated.
  • [12] V. Gupta: An estimate on the convergence of Baskakov—Bézier operators, J. Math. Anal. Appl. 312 (1)(2005), 280–288.
  • [13] V. Gupta, Th. M. Rassias and R. Yadav: Approximation by Lupa¸s-Beta integral operators, Appl. Math. Comput. 236 (2014), 19–26.
  • [14] V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu: Recent Advances in Constructive Approximation Theory, Springer Optimization and Its Applications, vol. 138, (2018), Springer, Cham.
  • [15] V. Gupta and R. Yadav: On approximation of certain integral operators, Acta Math. Vietnam. 39 (2)(2014), 193–203.
  • [16] A. Lupaş: The approximation by means of some linear positive operators, In: Approximation Theory (M.W. Müller others, eds), pp. 201—227. Akademie-Verlag, Berlin (1995).
Year 2018, Volume: 1 Issue: 1, 9 - 14, 15.09.2018
https://doi.org/10.33205/cma.452962

Abstract

References

  • [1] T. Acar: Asymptotic formulas for generalized Szász-–Mirakyan operators, Appl. Math. Comput. 263 (2015), 233-239.
  • [2] T. Acar, V. Gupta and A. Aral: Rate of convergence for generalized Szász operators, Bull. Math. Sci. 1 (1)(2011), 99–113.
  • [3] R. P. Agarwal and V. Gupta: On q-analogue of a complex summation-integral type operators in compact disks, J. Inequal. Appl. 2012 (1) (2012), Art. 111.
  • [4] A. Aral, V. Gupta and R. P. Agarwal: Applications of q Calculus in Operator Theory, Springer-Verlag, New York, 2013.
  • [5] A. M. Acu and I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms 73(2016), 775—789.
  • [6] O. Agratini: On a sequence of linear and positive operators, Facta Univ. (NIS) Ser. Math. Inform. 14 (1999), 41-–48.
  • [7] A. Aral, D. Inoan and I. Rasa: On differences of linear positive operators, Anal. Math. Phys.(2018). DOI https://doi.org/10.1007/s1332
  • [8] M. Bodur, O. G. Yılmaz and A. Aral: Approximation by Baskakov-Szász-Stancu operators preserving exponential functions, Const. Math. Anal. 1 (1) (2018), 1–8.
  • [9] N. Deo: Faster rate of convergence on Srivastava—Gupta operators, Appl. Math. Comput. 218 (21)(2012), 10486–10491.
  • [10] S. G. Gal and V. Gupta: Quantitative estimates for a new complex Durrmeyer operator in compact disks, Appl. Math. Comput. 218 (6) (2011), 2944–2951.
  • [11] V. Gupta: On difference of operators with applications to Szász type operators, communicated.
  • [12] V. Gupta: An estimate on the convergence of Baskakov—Bézier operators, J. Math. Anal. Appl. 312 (1)(2005), 280–288.
  • [13] V. Gupta, Th. M. Rassias and R. Yadav: Approximation by Lupa¸s-Beta integral operators, Appl. Math. Comput. 236 (2014), 19–26.
  • [14] V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu: Recent Advances in Constructive Approximation Theory, Springer Optimization and Its Applications, vol. 138, (2018), Springer, Cham.
  • [15] V. Gupta and R. Yadav: On approximation of certain integral operators, Acta Math. Vietnam. 39 (2)(2014), 193–203.
  • [16] A. Lupaş: The approximation by means of some linear positive operators, In: Approximation Theory (M.W. Müller others, eds), pp. 201—227. Akademie-Verlag, Berlin (1995).
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Vijay Gupta

Publication Date September 15, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Gupta, V. (2018). Differences of Operators of Lupaş Type. Constructive Mathematical Analysis, 1(1), 9-14. https://doi.org/10.33205/cma.452962
AMA Gupta V. Differences of Operators of Lupaş Type. CMA. September 2018;1(1):9-14. doi:10.33205/cma.452962
Chicago Gupta, Vijay. “Differences of Operators of Lupaş Type”. Constructive Mathematical Analysis 1, no. 1 (September 2018): 9-14. https://doi.org/10.33205/cma.452962.
EndNote Gupta V (September 1, 2018) Differences of Operators of Lupaş Type. Constructive Mathematical Analysis 1 1 9–14.
IEEE V. Gupta, “Differences of Operators of Lupaş Type”, CMA, vol. 1, no. 1, pp. 9–14, 2018, doi: 10.33205/cma.452962.
ISNAD Gupta, Vijay. “Differences of Operators of Lupaş Type”. Constructive Mathematical Analysis 1/1 (September 2018), 9-14. https://doi.org/10.33205/cma.452962.
JAMA Gupta V. Differences of Operators of Lupaş Type. CMA. 2018;1:9–14.
MLA Gupta, Vijay. “Differences of Operators of Lupaş Type”. Constructive Mathematical Analysis, vol. 1, no. 1, 2018, pp. 9-14, doi:10.33205/cma.452962.
Vancouver Gupta V. Differences of Operators of Lupaş Type. CMA. 2018;1(1):9-14.