Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 40 - 48, 01.03.2019
https://doi.org/10.33205/cma.499171

Abstract

References

  • [1] M. Abbas, D. Ilic, T. Nazir, Iterative Approximation of Fixed Points of Generalized Weak Prešic Type k-Step Iterative Method for a Class of Operators, Filomat, 29 (4) (2015) 713-724.
  • [2] R. George, KP Reshma and R. Rajagopalan, A generalised fixed point theorem of Prešic type in cone metric spaces and application to Markov process, Fixed Point Theory Appl., 2011, 2011:85.
  • [3] Z. Kadelburg, S. Radenovic, Notes on Some Recent Papers Concerning F-Contractions in b-Metric Spaces, Constr. Math. Anal., 1(2) (2018), 108-112.
  • [4] E. Karapinar, A Short Survey on the Recent Fixed Point Results on b-Metric Spaces, Constr. Math. Anal., 1(1)(2018) 15-44.
  • [5] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012, 2012:204
  • [6] P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Eng., 51(12) (2000) 3-7.
  • [7] N. Hussain, J. R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings on ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013, 2013:486
  • [8] Lj. B. Ciric and S. B. Prešic, On Prešic type generalization of Banach contraction mapping principle, Acta Math. Univ. Comenianae, LXXVI(2) (2007) 143-147.
  • [9] M. Pacurar, Approximating common fixed points of Prešic-Kannan type operators by a multi-step iterative method, An. St. Univ. Ovidius Constanta, 17(1) (2009) 153-168.
  • [10] S. B. Prešic, Sur une classe d’inequations aux differences finite et sur la convergence de certaines suites, Publications de l’Institut Mathématique, 5(19) (1965) 75-78.
  • [11] K. P. R. Rao, G. N. V. Kishore and Md. Mustaq Ali, Generalization of Banach contraction principle of Prešic type for three maps, Math. Sci., 3(3) (2009) 273 - 280.
  • [12] K. P. R. Rao, Md. Mustaq Ali and B.Fisher, Some Preši´c type generalization of Banach contraction principle, Math. Moravica 15 (2011) 41 - 47.
  • [13] P. Salimi, N. Hussain, S. Shukla, Sh. Fathollahi, S. Radenovic, Fixed point results for cyclic $\alpha -\psi \phi -$ contractions with applications to integral equations, J. Comput. Appl. Math., 290 (2015) 445-458.
  • [14] S. Shukla, S. Radenovic, S. Pantelic, Some Fixed Point Theorems for Prešic-Hardy-Rogers Type Contractions in Metric Spaces, Journal of Mathematics, (2013) ArticleID 295093.
  • [15] S. Shukla, S. Radenovic, V.C . Rajic, Some common fixed point theorems in $\sigma -$complete metric-like spaces, Vietnam J. Math., 41 (2013) 341-352.

Some Presic Type Results in $b-$Dislocated Metric Spaces

Year 2019, Volume: 2 Issue: 1, 40 - 48, 01.03.2019
https://doi.org/10.33205/cma.499171

Abstract

In this paper, we obtain a Pre\v{s}i\'{c} type common fixed point theorem for four maps in $b$-dislocated metric spaces. We also present one example to illustrate our main theorem. Further, we obtain two more corollaries.

References

  • [1] M. Abbas, D. Ilic, T. Nazir, Iterative Approximation of Fixed Points of Generalized Weak Prešic Type k-Step Iterative Method for a Class of Operators, Filomat, 29 (4) (2015) 713-724.
  • [2] R. George, KP Reshma and R. Rajagopalan, A generalised fixed point theorem of Prešic type in cone metric spaces and application to Markov process, Fixed Point Theory Appl., 2011, 2011:85.
  • [3] Z. Kadelburg, S. Radenovic, Notes on Some Recent Papers Concerning F-Contractions in b-Metric Spaces, Constr. Math. Anal., 1(2) (2018), 108-112.
  • [4] E. Karapinar, A Short Survey on the Recent Fixed Point Results on b-Metric Spaces, Constr. Math. Anal., 1(1)(2018) 15-44.
  • [5] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012, 2012:204
  • [6] P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Eng., 51(12) (2000) 3-7.
  • [7] N. Hussain, J. R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings on ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013, 2013:486
  • [8] Lj. B. Ciric and S. B. Prešic, On Prešic type generalization of Banach contraction mapping principle, Acta Math. Univ. Comenianae, LXXVI(2) (2007) 143-147.
  • [9] M. Pacurar, Approximating common fixed points of Prešic-Kannan type operators by a multi-step iterative method, An. St. Univ. Ovidius Constanta, 17(1) (2009) 153-168.
  • [10] S. B. Prešic, Sur une classe d’inequations aux differences finite et sur la convergence de certaines suites, Publications de l’Institut Mathématique, 5(19) (1965) 75-78.
  • [11] K. P. R. Rao, G. N. V. Kishore and Md. Mustaq Ali, Generalization of Banach contraction principle of Prešic type for three maps, Math. Sci., 3(3) (2009) 273 - 280.
  • [12] K. P. R. Rao, Md. Mustaq Ali and B.Fisher, Some Preši´c type generalization of Banach contraction principle, Math. Moravica 15 (2011) 41 - 47.
  • [13] P. Salimi, N. Hussain, S. Shukla, Sh. Fathollahi, S. Radenovic, Fixed point results for cyclic $\alpha -\psi \phi -$ contractions with applications to integral equations, J. Comput. Appl. Math., 290 (2015) 445-458.
  • [14] S. Shukla, S. Radenovic, S. Pantelic, Some Fixed Point Theorems for Prešic-Hardy-Rogers Type Contractions in Metric Spaces, Journal of Mathematics, (2013) ArticleID 295093.
  • [15] S. Shukla, S. Radenovic, V.C . Rajic, Some common fixed point theorems in $\sigma -$complete metric-like spaces, Vietnam J. Math., 41 (2013) 341-352.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

A. Som Babu This is me

Tatjana Dosenovıc

Md. Mustaq Alı This is me

Stojan Radenovıc

K. P. R. Rao

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Babu, A. S., Dosenovıc, T., Alı, M. M., Radenovıc, S., et al. (2019). Some Presic Type Results in $b-$Dislocated Metric Spaces. Constructive Mathematical Analysis, 2(1), 40-48. https://doi.org/10.33205/cma.499171
AMA Babu AS, Dosenovıc T, Alı MM, Radenovıc S, Rao KPR. Some Presic Type Results in $b-$Dislocated Metric Spaces. CMA. March 2019;2(1):40-48. doi:10.33205/cma.499171
Chicago Babu, A. Som, Tatjana Dosenovıc, Md. Mustaq Alı, Stojan Radenovıc, and K. P. R. Rao. “Some Presic Type Results in $b-$Dislocated Metric Spaces”. Constructive Mathematical Analysis 2, no. 1 (March 2019): 40-48. https://doi.org/10.33205/cma.499171.
EndNote Babu AS, Dosenovıc T, Alı MM, Radenovıc S, Rao KPR (March 1, 2019) Some Presic Type Results in $b-$Dislocated Metric Spaces. Constructive Mathematical Analysis 2 1 40–48.
IEEE A. S. Babu, T. Dosenovıc, M. M. Alı, S. Radenovıc, and K. P. R. Rao, “Some Presic Type Results in $b-$Dislocated Metric Spaces”, CMA, vol. 2, no. 1, pp. 40–48, 2019, doi: 10.33205/cma.499171.
ISNAD Babu, A. Som et al. “Some Presic Type Results in $b-$Dislocated Metric Spaces”. Constructive Mathematical Analysis 2/1 (March 2019), 40-48. https://doi.org/10.33205/cma.499171.
JAMA Babu AS, Dosenovıc T, Alı MM, Radenovıc S, Rao KPR. Some Presic Type Results in $b-$Dislocated Metric Spaces. CMA. 2019;2:40–48.
MLA Babu, A. Som et al. “Some Presic Type Results in $b-$Dislocated Metric Spaces”. Constructive Mathematical Analysis, vol. 2, no. 1, 2019, pp. 40-48, doi:10.33205/cma.499171.
Vancouver Babu AS, Dosenovıc T, Alı MM, Radenovıc S, Rao KPR. Some Presic Type Results in $b-$Dislocated Metric Spaces. CMA. 2019;2(1):40-8.