Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 2, 64 - 80, 01.06.2019
https://doi.org/10.33205/cma.543560

Abstract

References

  • [1] R. P. Agarwal, S. S. Dragomir: An application of Hayashi’s inequality for differentiable functions, Computers Math. Applic., 6 (1996), 95-99.
  • [2] G. A. Anastassiou: Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009.
  • [3] G. A. Anastassiou: General Iyengar type inequalities, submitted, 2018.
  • [4] Xiao-Liang Cheng: The Iyengar-type inequality, Applied Math. Letters 14 (2001), 975-978.
  • [5] K. S. K. Iyengar: Note on an inequality, Math. Student 6, (1938), 75-76.
  • [6] Zheng Liu: Note on Iyengar’s inequality, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 16 (2005), 29-35.
  • [7] F. Qi: Further generalizations of inequalities for an integral, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 8 (1997), 79-83.
  • [8] W. Rudin: Real and Complex Analysis, International Student edition, Mc Graw Hill, London, New York, 1970.
  • [9] D. Stroock: A Concise Introduction to the Theory of Integration, Third Edition, Birkhaüser, Boston, Basel, Berlin, 1999.

General Multivariate Iyengar Type Inequalities

Year 2019, Volume: 2 Issue: 2, 64 - 80, 01.06.2019
https://doi.org/10.33205/cma.543560

Abstract

Here we give a variety of general multivariate Iyengar type inequalities for not necessarily radial functions defined on the shell and ball. Our approach is based on the polar coordinates in $\mathbb{R}^{N}$, $N\geq 2$, and the related multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities and univariate author's related results into general multivariate Iyengar inequalities.

References

  • [1] R. P. Agarwal, S. S. Dragomir: An application of Hayashi’s inequality for differentiable functions, Computers Math. Applic., 6 (1996), 95-99.
  • [2] G. A. Anastassiou: Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009.
  • [3] G. A. Anastassiou: General Iyengar type inequalities, submitted, 2018.
  • [4] Xiao-Liang Cheng: The Iyengar-type inequality, Applied Math. Letters 14 (2001), 975-978.
  • [5] K. S. K. Iyengar: Note on an inequality, Math. Student 6, (1938), 75-76.
  • [6] Zheng Liu: Note on Iyengar’s inequality, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 16 (2005), 29-35.
  • [7] F. Qi: Further generalizations of inequalities for an integral, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 8 (1997), 79-83.
  • [8] W. Rudin: Real and Complex Analysis, International Student edition, Mc Graw Hill, London, New York, 1970.
  • [9] D. Stroock: A Concise Introduction to the Theory of Integration, Third Edition, Birkhaüser, Boston, Basel, Berlin, 1999.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

George Anastassıou

Publication Date June 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Anastassıou, G. (2019). General Multivariate Iyengar Type Inequalities. Constructive Mathematical Analysis, 2(2), 64-80. https://doi.org/10.33205/cma.543560
AMA Anastassıou G. General Multivariate Iyengar Type Inequalities. CMA. June 2019;2(2):64-80. doi:10.33205/cma.543560
Chicago Anastassıou, George. “General Multivariate Iyengar Type Inequalities”. Constructive Mathematical Analysis 2, no. 2 (June 2019): 64-80. https://doi.org/10.33205/cma.543560.
EndNote Anastassıou G (June 1, 2019) General Multivariate Iyengar Type Inequalities. Constructive Mathematical Analysis 2 2 64–80.
IEEE G. Anastassıou, “General Multivariate Iyengar Type Inequalities”, CMA, vol. 2, no. 2, pp. 64–80, 2019, doi: 10.33205/cma.543560.
ISNAD Anastassıou, George. “General Multivariate Iyengar Type Inequalities”. Constructive Mathematical Analysis 2/2 (June 2019), 64-80. https://doi.org/10.33205/cma.543560.
JAMA Anastassıou G. General Multivariate Iyengar Type Inequalities. CMA. 2019;2:64–80.
MLA Anastassıou, George. “General Multivariate Iyengar Type Inequalities”. Constructive Mathematical Analysis, vol. 2, no. 2, 2019, pp. 64-80, doi:10.33205/cma.543560.
Vancouver Anastassıou G. General Multivariate Iyengar Type Inequalities. CMA. 2019;2(2):64-80.