Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 2, 64 - 74, 01.06.2020
https://doi.org/10.33205/cma.688661

Abstract

References

  • U. Abel: An identity for a general class of approximation operators. J. Approx. Theory 142 (2006), 20--35.
  • U. Abel, O. Agratini: Asymptotic behaviour of Jain operators. Numer. Algor. 71 (2016), 553--565.
  • U. Abel, O. Agratini: On the variation detracting property of operators of Balazs and Szabados. Acta Math. Hungar. 150 (2016), 383--395.
  • U. Abel, B. della Vecchia: Asymptotic approximation by the operators of K. Balazs and Szabados. Acta Sci. Math. (Szeged) 66 (1-2) (2000), 137--145.
  • U. Abel, W. Gawronski and T. Neuschel: Complete monotonicity and zeros of sums of squared Baskakov functions. Appl. Math. Comput. 258 (2015), 130--137.
  • T. Acar: Quantitative q-Voronovskaya and q-Gruss-Voronovskaya-type results for q-Szasz operators. Georgian Math. J. 23 (2016), 459--468.
  • A.M. Acu, H. Gonska and I. Raşa: Gruss-type and Ostrowski-type in approximation theory. Ukr. Math. J. 63 (2011), 843--864.
  • O. Agratini: On approximation properties of Balazs-Szabados operators and their Kantorovich extension. Korean J. Comput. & Appl. Math. 9 (2002), 361--372.
  • O. Agratini: Properties of discrete non-multiplicative operators. Anal. Math. Phys. 9 (2019), 131--141.
  • D. Andrica, C. Badea: Gruss inequality for positive linear functionals. Period. Math. Hungar. 19 (1988), 155--167.
  • C. Atakut: On the approximation of functions together with derivatives by certain linear positive operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 46 (1997), 57--65.
  • K. Balâzs: Approximation by Bernstein type rational functions. Acta Math. Acad. Sci. Hungar. 26 (1975), 123--134.
  • C. Balâzs, J. Szabados: Approximation by Bernstein type rational functions. II. Acta Math. Acad. Sci. Hungar. 40 (1982), 331--337.
  • E. Berdysheva: Studying Baskakov-Durrmeyer operators and quasi-interpolants via special functions. J. Approx. Theory 149 (2007), 131--150.
  • P. L. Chebyshev: Sur les expressions approximatives des integrales definies par les autres prises entre les meme limites. Proc. Math. Soc. Kharkov 2 (1882), 93--98.
  • E. Deniz: Quantitative estimates for Jain–Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Sêr. A1 Math. Stat. 65 (2016), 121--132.
  • A. Farcaş: An asymptotic formula for Jain's operators. Stud. Univ. Babeş-Bolyai Math. 57 (2012), 511--517.
  • S. G. Gal, H. Gonska: Gruss and Gruss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables. Jaen J. Approx. 7 (2015), 97--122.
  • B. Gavrea,I. Gavrea: Ostrowski type inequalities from a linear functional point of view. J. Inequal. Pure Appl. Math. 1 (2000), Article 11.
  • H. Gonska, I. Raşa and M. D. Rusu: Cebysev-Gruss inequalities revisited. Math. Slov. 63 (2013), 1007--1024.
  • H. Gonska, I. Raşa and M. D. Rusu: Chebyshev-Gruss-type inequalities via discrete oscillations. Bul. Acad. Ştiinte Repub. Mold. Mat. 1 (74) (2014), 63--89.
  • H. Gonska, G. Tachev}: Gruss type inequality for positive linear operators with second order moduli. Mat. Vesn. 63 (2011), 247--252.
  • G. C. Greubel: A note on Jain basis functions. arXiv:1612.09385 [math.CA], (2016)
  • G. Grûss: Uber das Maximum des Absoluten Betrages von $\frac{1}{b-a}\int_a^b f(x)g(x)dx- \frac{1}{(b-a)^2}\int_a^b f(x)dx\ \int_a^b g(x)dx$. Math. Z. 39 (1935), 215--226.
  • A. Holhoş: Quantitative Estimates of Voronovskaya Type in Weighted Spaces. Results Math. 73 (2018), 53.
  • A. Holhoş: A Voronovskaya-Type Theorem for the First Derivatives of Positive Linear Operators. Results Math. 74 (2019), 76, https://doi.org/10.1007/s00025-019-0992-0
  • C. Impens, I. Gavrea: A Leibniz differentiation formula for positive operators. J. Math. Anal. Appl. 271 (2002), 175--181.
  • M. E. H. Ismail, C. P. May: On a Family of Approximation Operators. J. Math. Anal. Appl. 63 (1978), 446--462.
  • G. C. Jain: Approximation of functions by a new class of linear operators. J. Aust. Math. Soc. 13 (1972), 271--276.
  • A. Kajla, S. Deshwal and P. N. Agrawal: Quantitative Voronovskaya and Gruss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type. Anal. Math. Phys. 9 (2019), 1241--1263.
  • C. P. May: Saturation and inverse theorems for combinations of a class of exponential-type operators. Canad. J. Math 28 (1976), 1224--1250.
  • I. Raşa: Entropies and Heun functions associated with positive linear operators. Appl. Math. Comput. 268 (2015), 422--431.
  • M. D. Rusu: On Gruss-type inequalities for positive linear operators. Stud. Univ. Babes-Bolyai Math. 56 (2011), 551--565.
  • V. Totik: Saturation for Bernstein type rational functions. Acta Math. Hungar. 43 (1984), 219--250.
  • G. Ulusoy,T. Acar: q-Voronovskaya type theorems for q-Baskakov operators. Math. Methods Appl. Sci. 39 (2016), 3391--3401.
  • A. Wafi, S. Khatoon: Convergence and Voronovskaja-type theorems for derivatives of generalized Baskakov operators. Cent. Eur. J. Math. 6 (2008), 325--334.

The Product of Two Functions Using Positive Linear Operators

Year 2020, Volume: 3 Issue: 2, 64 - 74, 01.06.2020
https://doi.org/10.33205/cma.688661

Abstract

In this paper we estimate the speed of convergence of the difference $L_n(fg)-(L_n f)\cdot (L_n g)$ towards 0, where $(L_n)$ are positive linear operators used in the approximation of continuous functions. We also study in what conditions the formula ${L'_n}(fg)-f {L'_n}g-g {L'_n}f \to 0$ holds true.

References

  • U. Abel: An identity for a general class of approximation operators. J. Approx. Theory 142 (2006), 20--35.
  • U. Abel, O. Agratini: Asymptotic behaviour of Jain operators. Numer. Algor. 71 (2016), 553--565.
  • U. Abel, O. Agratini: On the variation detracting property of operators of Balazs and Szabados. Acta Math. Hungar. 150 (2016), 383--395.
  • U. Abel, B. della Vecchia: Asymptotic approximation by the operators of K. Balazs and Szabados. Acta Sci. Math. (Szeged) 66 (1-2) (2000), 137--145.
  • U. Abel, W. Gawronski and T. Neuschel: Complete monotonicity and zeros of sums of squared Baskakov functions. Appl. Math. Comput. 258 (2015), 130--137.
  • T. Acar: Quantitative q-Voronovskaya and q-Gruss-Voronovskaya-type results for q-Szasz operators. Georgian Math. J. 23 (2016), 459--468.
  • A.M. Acu, H. Gonska and I. Raşa: Gruss-type and Ostrowski-type in approximation theory. Ukr. Math. J. 63 (2011), 843--864.
  • O. Agratini: On approximation properties of Balazs-Szabados operators and their Kantorovich extension. Korean J. Comput. & Appl. Math. 9 (2002), 361--372.
  • O. Agratini: Properties of discrete non-multiplicative operators. Anal. Math. Phys. 9 (2019), 131--141.
  • D. Andrica, C. Badea: Gruss inequality for positive linear functionals. Period. Math. Hungar. 19 (1988), 155--167.
  • C. Atakut: On the approximation of functions together with derivatives by certain linear positive operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 46 (1997), 57--65.
  • K. Balâzs: Approximation by Bernstein type rational functions. Acta Math. Acad. Sci. Hungar. 26 (1975), 123--134.
  • C. Balâzs, J. Szabados: Approximation by Bernstein type rational functions. II. Acta Math. Acad. Sci. Hungar. 40 (1982), 331--337.
  • E. Berdysheva: Studying Baskakov-Durrmeyer operators and quasi-interpolants via special functions. J. Approx. Theory 149 (2007), 131--150.
  • P. L. Chebyshev: Sur les expressions approximatives des integrales definies par les autres prises entre les meme limites. Proc. Math. Soc. Kharkov 2 (1882), 93--98.
  • E. Deniz: Quantitative estimates for Jain–Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Sêr. A1 Math. Stat. 65 (2016), 121--132.
  • A. Farcaş: An asymptotic formula for Jain's operators. Stud. Univ. Babeş-Bolyai Math. 57 (2012), 511--517.
  • S. G. Gal, H. Gonska: Gruss and Gruss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables. Jaen J. Approx. 7 (2015), 97--122.
  • B. Gavrea,I. Gavrea: Ostrowski type inequalities from a linear functional point of view. J. Inequal. Pure Appl. Math. 1 (2000), Article 11.
  • H. Gonska, I. Raşa and M. D. Rusu: Cebysev-Gruss inequalities revisited. Math. Slov. 63 (2013), 1007--1024.
  • H. Gonska, I. Raşa and M. D. Rusu: Chebyshev-Gruss-type inequalities via discrete oscillations. Bul. Acad. Ştiinte Repub. Mold. Mat. 1 (74) (2014), 63--89.
  • H. Gonska, G. Tachev}: Gruss type inequality for positive linear operators with second order moduli. Mat. Vesn. 63 (2011), 247--252.
  • G. C. Greubel: A note on Jain basis functions. arXiv:1612.09385 [math.CA], (2016)
  • G. Grûss: Uber das Maximum des Absoluten Betrages von $\frac{1}{b-a}\int_a^b f(x)g(x)dx- \frac{1}{(b-a)^2}\int_a^b f(x)dx\ \int_a^b g(x)dx$. Math. Z. 39 (1935), 215--226.
  • A. Holhoş: Quantitative Estimates of Voronovskaya Type in Weighted Spaces. Results Math. 73 (2018), 53.
  • A. Holhoş: A Voronovskaya-Type Theorem for the First Derivatives of Positive Linear Operators. Results Math. 74 (2019), 76, https://doi.org/10.1007/s00025-019-0992-0
  • C. Impens, I. Gavrea: A Leibniz differentiation formula for positive operators. J. Math. Anal. Appl. 271 (2002), 175--181.
  • M. E. H. Ismail, C. P. May: On a Family of Approximation Operators. J. Math. Anal. Appl. 63 (1978), 446--462.
  • G. C. Jain: Approximation of functions by a new class of linear operators. J. Aust. Math. Soc. 13 (1972), 271--276.
  • A. Kajla, S. Deshwal and P. N. Agrawal: Quantitative Voronovskaya and Gruss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type. Anal. Math. Phys. 9 (2019), 1241--1263.
  • C. P. May: Saturation and inverse theorems for combinations of a class of exponential-type operators. Canad. J. Math 28 (1976), 1224--1250.
  • I. Raşa: Entropies and Heun functions associated with positive linear operators. Appl. Math. Comput. 268 (2015), 422--431.
  • M. D. Rusu: On Gruss-type inequalities for positive linear operators. Stud. Univ. Babes-Bolyai Math. 56 (2011), 551--565.
  • V. Totik: Saturation for Bernstein type rational functions. Acta Math. Hungar. 43 (1984), 219--250.
  • G. Ulusoy,T. Acar: q-Voronovskaya type theorems for q-Baskakov operators. Math. Methods Appl. Sci. 39 (2016), 3391--3401.
  • A. Wafi, S. Khatoon: Convergence and Voronovskaja-type theorems for derivatives of generalized Baskakov operators. Cent. Eur. J. Math. 6 (2008), 325--334.
There are 36 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Adrian Holhoş

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Holhoş, A. (2020). The Product of Two Functions Using Positive Linear Operators. Constructive Mathematical Analysis, 3(2), 64-74. https://doi.org/10.33205/cma.688661
AMA Holhoş A. The Product of Two Functions Using Positive Linear Operators. CMA. June 2020;3(2):64-74. doi:10.33205/cma.688661
Chicago Holhoş, Adrian. “The Product of Two Functions Using Positive Linear Operators”. Constructive Mathematical Analysis 3, no. 2 (June 2020): 64-74. https://doi.org/10.33205/cma.688661.
EndNote Holhoş A (June 1, 2020) The Product of Two Functions Using Positive Linear Operators. Constructive Mathematical Analysis 3 2 64–74.
IEEE A. Holhoş, “The Product of Two Functions Using Positive Linear Operators”, CMA, vol. 3, no. 2, pp. 64–74, 2020, doi: 10.33205/cma.688661.
ISNAD Holhoş, Adrian. “The Product of Two Functions Using Positive Linear Operators”. Constructive Mathematical Analysis 3/2 (June 2020), 64-74. https://doi.org/10.33205/cma.688661.
JAMA Holhoş A. The Product of Two Functions Using Positive Linear Operators. CMA. 2020;3:64–74.
MLA Holhoş, Adrian. “The Product of Two Functions Using Positive Linear Operators”. Constructive Mathematical Analysis, vol. 3, no. 2, 2020, pp. 64-74, doi:10.33205/cma.688661.
Vancouver Holhoş A. The Product of Two Functions Using Positive Linear Operators. CMA. 2020;3(2):64-7.