In this paper, we present the duality theory for general weighted space of vector functions. We mention that a characterization of the dual of a weighted space of vector functions in the particular case $V \subset C^{+} (X)$ is mentioned by J. B. Prolla in [6]. Also, we extend de Branges lemma in this new setting for convex cones of a weighted spaces of vector functions (Theorem 4.2). Using this theorem, we find various approximations results for weighted spaces of vector functions: Theorems 4.2-4.6 as well as Corollary 4.3. We mention also that a brief version of this paper, in the particular case $V \subset C^{+} (X)$, is presented in [3], Chapter 2, subparagraph 2.5.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Publication Date | June 1, 2021 |
Published in Issue | Year 2021 Volume: 4 Issue: 2 |