Research Article
BibTex RIS Cite

On matching distance between eigenvalues of unbounded operators

Year 2022, Volume: 5 Issue: 1, 46 - 53, 14.03.2022
https://doi.org/10.33205/cma.1060718

Abstract

Let AA and ~AA~ be linear operators on a Banach space having compact resolvents, and let λk(A)λk(A) and λk(~A)(k=1,2,)λk(A~)(k=1,2,…) be the eigenvalues taken with their algebraic multiplicities of AA and ~AA~, respectively. Under some conditions, we derive a bound for the quantity
md(A,~A):=infπsupk=1,2,λπ(k)(~A)λk(A)∣,md⁡(A,A~):=infπsupk=1,2,…|λπ(k)(A~)−λk(A)|,
where ππ is taken over all permutations of the set of all positive integers. That quantity is called the matching optimal distance between the eigenvalues of AA and ~AA~. Applications of the obtained bound to matrix differential operators are also discussed.

References

  • B. Abdelmoumen, A. Jeribi and M. Mnif: Invariance of the Schechter essential spectrum under polynomially compact operator perturbation, Extracta Math., 26 (1) (2011), 61–73.
  • P. Aiena, S. Triolo: Some perturbation results through localized SVEP, Acta Sci. Math. (Szeged), 82 (1–2) (2016), 205–219.
  • A. D. Baranov, D. V. Yakubovich: Completeness of rank one perturbations of normal operators with lacunary spectrum, J. Spectr. Theory, 8 (1) (2018), 1–32.
  • S. Buterin, S.V. Vasiliev: On uniqueness of recovering the convolution integro-differential operator from the spectrum of its non-smooth one-dimensional perturbation, Bound. Value Probl., (2018), Paper No. 55, 12 pp.
  • W. Chaker, A. Jeribi and B. Krichen: Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr., 288 (13) (2015), 1476–1486.
  • N. Dunford, J.T. Schwartz: Linear Operators, part I. General Theory,Wiley Interscience publishers, New York (1966).
  • M. I. Gil: Perturbations of operators on tensor products and spectrum localization of matrix differential operators, J. Appl. Funct. Anal., 3 (3) (2008), 315–332.
  • M. I. Gil: Spectral approximations of unbounded non-selfadjoint operators, Analysis and Mathem. Physics, 3 (1) (2013), 37–44.
  • M. I. Gil: Spectral approximations of unbounded operators of the type "normal plus compact", Funct. Approximatio. Comment. Math., 51 (1) (2014), 133–140.
  • M. I. Gil: Operator Functions and Operator Equations.World Scientific, New Jersey (2018).
  • M. I. Gil: Norm estimates for resolvents of linear operators in a Banach space and spectral variations, Advances in Operator Theory, 4 (1) (2019), 113–139.
  • A. Jeribi: Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer-Verlag, New-York (2015).
  • A. Jeribi: Linear Operators and Their Essential Pseudospectra, CRC Press, Boca Raton (2018).
  • A. Jeribi: Perturbation Theory for Linear Operators: Denseness and Bases with Applications, Springer-Verlag, Singapore (2021).
  • T. Kato: Perturbation Theory for Linear Operators, Springer-Verlag, Berlin (1980).
  • R. Killip: Perturbations of one-dimensional Schrodinger operators preserving the absolutely continuous spectrum, Int. Math. Res. Not., 38 (2002), 2029-2061.
  • R. Ma, H. Wang and M. Elsanosi: Spectrum of a linear fourth-order differential operator and its applications, Math. Nachr., 286 (17-18) (2013), 1805-1819.
  • M. L. Sahari, A. K. Taha and L. Randriamihamison: A note on the spectrum of diagonal perturbation of weighted shift operator, Matematiche (Catania), 74 (1) (2019), 35-47.
  • G. W. Stewart, Ji-guang Sun: Matrix Perturbation Theory, Academic Press, New York (1990).
  • M. Zhang, J. Sun and J. Ao: The discreteness of spectrum for higher-order differential operators in weighted function spaces. Bull. Aust. Math. Soc., 86 (3) (2012), 370-376.
Year 2022, Volume: 5 Issue: 1, 46 - 53, 14.03.2022
https://doi.org/10.33205/cma.1060718

Abstract

References

  • B. Abdelmoumen, A. Jeribi and M. Mnif: Invariance of the Schechter essential spectrum under polynomially compact operator perturbation, Extracta Math., 26 (1) (2011), 61–73.
  • P. Aiena, S. Triolo: Some perturbation results through localized SVEP, Acta Sci. Math. (Szeged), 82 (1–2) (2016), 205–219.
  • A. D. Baranov, D. V. Yakubovich: Completeness of rank one perturbations of normal operators with lacunary spectrum, J. Spectr. Theory, 8 (1) (2018), 1–32.
  • S. Buterin, S.V. Vasiliev: On uniqueness of recovering the convolution integro-differential operator from the spectrum of its non-smooth one-dimensional perturbation, Bound. Value Probl., (2018), Paper No. 55, 12 pp.
  • W. Chaker, A. Jeribi and B. Krichen: Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr., 288 (13) (2015), 1476–1486.
  • N. Dunford, J.T. Schwartz: Linear Operators, part I. General Theory,Wiley Interscience publishers, New York (1966).
  • M. I. Gil: Perturbations of operators on tensor products and spectrum localization of matrix differential operators, J. Appl. Funct. Anal., 3 (3) (2008), 315–332.
  • M. I. Gil: Spectral approximations of unbounded non-selfadjoint operators, Analysis and Mathem. Physics, 3 (1) (2013), 37–44.
  • M. I. Gil: Spectral approximations of unbounded operators of the type "normal plus compact", Funct. Approximatio. Comment. Math., 51 (1) (2014), 133–140.
  • M. I. Gil: Operator Functions and Operator Equations.World Scientific, New Jersey (2018).
  • M. I. Gil: Norm estimates for resolvents of linear operators in a Banach space and spectral variations, Advances in Operator Theory, 4 (1) (2019), 113–139.
  • A. Jeribi: Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer-Verlag, New-York (2015).
  • A. Jeribi: Linear Operators and Their Essential Pseudospectra, CRC Press, Boca Raton (2018).
  • A. Jeribi: Perturbation Theory for Linear Operators: Denseness and Bases with Applications, Springer-Verlag, Singapore (2021).
  • T. Kato: Perturbation Theory for Linear Operators, Springer-Verlag, Berlin (1980).
  • R. Killip: Perturbations of one-dimensional Schrodinger operators preserving the absolutely continuous spectrum, Int. Math. Res. Not., 38 (2002), 2029-2061.
  • R. Ma, H. Wang and M. Elsanosi: Spectrum of a linear fourth-order differential operator and its applications, Math. Nachr., 286 (17-18) (2013), 1805-1819.
  • M. L. Sahari, A. K. Taha and L. Randriamihamison: A note on the spectrum of diagonal perturbation of weighted shift operator, Matematiche (Catania), 74 (1) (2019), 35-47.
  • G. W. Stewart, Ji-guang Sun: Matrix Perturbation Theory, Academic Press, New York (1990).
  • M. Zhang, J. Sun and J. Ao: The discreteness of spectrum for higher-order differential operators in weighted function spaces. Bull. Aust. Math. Soc., 86 (3) (2012), 370-376.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Micheal Gil 0000-0002-6404-9618

Publication Date March 14, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Gil, M. (2022). On matching distance between eigenvalues of unbounded operators. Constructive Mathematical Analysis, 5(1), 46-53. https://doi.org/10.33205/cma.1060718
AMA Gil M. On matching distance between eigenvalues of unbounded operators. CMA. March 2022;5(1):46-53. doi:10.33205/cma.1060718
Chicago Gil, Micheal. “On Matching Distance Between Eigenvalues of Unbounded Operators”. Constructive Mathematical Analysis 5, no. 1 (March 2022): 46-53. https://doi.org/10.33205/cma.1060718.
EndNote Gil M (March 1, 2022) On matching distance between eigenvalues of unbounded operators. Constructive Mathematical Analysis 5 1 46–53.
IEEE M. Gil, “On matching distance between eigenvalues of unbounded operators”, CMA, vol. 5, no. 1, pp. 46–53, 2022, doi: 10.33205/cma.1060718.
ISNAD Gil, Micheal. “On Matching Distance Between Eigenvalues of Unbounded Operators”. Constructive Mathematical Analysis 5/1 (March 2022), 46-53. https://doi.org/10.33205/cma.1060718.
JAMA Gil M. On matching distance between eigenvalues of unbounded operators. CMA. 2022;5:46–53.
MLA Gil, Micheal. “On Matching Distance Between Eigenvalues of Unbounded Operators”. Constructive Mathematical Analysis, vol. 5, no. 1, 2022, pp. 46-53, doi:10.33205/cma.1060718.
Vancouver Gil M. On matching distance between eigenvalues of unbounded operators. CMA. 2022;5(1):46-53.