075-02-2022-882
Let $\mathcal{M}$ be a semifinite von Neumann algebra on a Hilbert space $\mathcal{H}$ equipped with a faithful normal semifinite trace $\tau$, $S(\mathcal{M},\tau)$ be the ${}^*$-algebra of all $\tau$-measurable operators. Let $S_0(\mathcal{M},\tau)$ be the ${}^*$-algebra of all $\tau$-compact operators and $T(\mathcal{M},\tau)=S_0(\mathcal{M},\tau)+\mathbb{C}I$ be the ${}^*$-algebra of all operators $X=A+\lambda I$
with $A\in S_0(\mathcal{M},\tau)$ and $\lambda \in \mathbb{C}$. It is proved that every operator of $T(\mathcal{M},\tau)$ that is left-invertible in $T(\mathcal{M},\tau)$ is in fact invertible in $T(\mathcal{M},\tau)$.
It is a generalization of Sterling Berberian theorem (1982) on the subalgebra of thin operators in $\mathcal{B} (\mathcal{H})$.
For the singular value function $\mu(t; Q)$ of $Q=Q^2\in S(\mathcal{M},\tau)$, the inclusion $\mu(t; Q)\in \{0\}\bigcup
[1, +\infty)$ holds for all $t>0$. It gives the positive answer to the question posed by Daniyar Mushtari in 2010.
Hilbert space von Neumann algebra semifinite trace $\tau$-measurable operator $\tau$-compact operator singular value function idempotent
Volga Region Mathematical Center
075-02-2022-882
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors | |
Project Number | 075-02-2022-882 |
Publication Date | March 15, 2023 |
Published in Issue | Year 2023 Volume: 6 Issue: 1 |