In this paper, we employ the concept of operator means as well as some operator techniques to establish new operator Bellman and operator H\"{o}lder type inequalities. Among other results, it is shown that if $\mathbf{A}=(A_t)_{t\in \Omega}$ and $\mathbf{B}=(B_t)_{t\in \Omega}$ are continuous fields of positive invertible operators in a unital $C^*$-algebra ${\mathscr A}$ such that $\int_{\Omega}A_t\,d\mu(t)\leq I_{\mathscr A}$ and $\int_{\Omega}B_t\,d\mu(t)\leq I_{\mathscr A}$, and if $\omega_f$ is an arbitrary operator mean with the representing function $f$, then
\begin{align*}
\left(I_{\mathscr A}-\int_{\Omega}(A_t \omega_f B_t)\,d\mu(t)\right)^p
\geq\left(I_{\mathscr A}-\int_{\Omega}A_t\,d\mu(t)\right) \omega_{f^p}\left(I_{\mathscr A}-\int_{\Omega}B_t\,d\mu(t)\right)
\end{align*}
for all $0 < p \leq 1$, which is an extension of the operator Bellman inequality.
Bellman inequality Cauchy-Schwarz inequality H\"{o}lder inequality operator mean Hadamard product continuous field of operators $C^*$-algebra.
Primary Language | English |
---|---|
Subjects | Operator Algebras and Functional Analysis |
Journal Section | Articles |
Authors | |
Early Pub Date | March 6, 2024 |
Publication Date | March 15, 2024 |
Submission Date | February 12, 2024 |
Acceptance Date | March 6, 2024 |
Published in Issue | Year 2024 Volume: 7 Issue: 1 |